FT-IR spectrometry has proved to be a useful tool for determining a series of plasma molecular concentrations. Dedicated experiments were first performed to test the analytical performance that could be obtained by FT-IR spectrometry using a synthesized N3-peptide exhibiting a -N3 absorption centered at 2110 cm(-1), a spectral region where no organic material of biological samples absorbs. Further, we investigated whether this technology was able to allow quantification of metabolic parameters (glucose and lactic acid) within plasma, cells, and tissues as an alternative method to the "classical" biochemical approaches, which require sophisticated biological material treatment and expensive reagents.
View Article and Find Full Text PDFIn this study, we have investigated the postoperative plasma consequences of coral implantation into femoral condyle of rabbits. Analyses were performed using Fourier transform infrared (FT-IR) spectroscopy, a sensitive and nondestructive method, to evaluate plasma modifications one day, one week, one month, and three months after surgery. This technique showed that both surgery and implantation induced important changes of lipidic compounds one day after surgery, with a body lipolysis.
View Article and Find Full Text PDFFourier transform infrared (FT-IR) spectroscopy is a convenient physico-chemical technique to investigate various cell materials. Bacteria of class Mollicutes, identified by conventional methods, as Mycoplasma, Acholeplasma and Ureaplasma genera were characterized using this method. A data set of 74 independent experiments corresponding to fourteen reference strains of Mollicutes was examined by FT-IR spectroscopy to attempt a spectral characterization based on the biomolecular structures.
View Article and Find Full Text PDFFourier transform IR spectroscopy (FTIR) is used to analyze cells of Micrococcus luteus, the type species of the highly heterogeneous genus Micrococcus that belongs to the Micrococcaceae family. The cells of M. luteus, which is a Gram-positive and yellow-pigmented bacterium, are submitted to increasing doses of gamma radiation.
View Article and Find Full Text PDFFourier transform infrared (FT-IR) spectroscopy was used to investigate the radiation-induced effects on Kocuria rosea. Bacterial suspensions at the stationary phase were exposed to increasing doses of gamma radiation. In the region 1350-840cm(-1), assigned to phosphodiester backbone, nucleic acids, and sugar rings, the radical damaging effects were dose-dependent, with the first threshold at 2.
View Article and Find Full Text PDF