Publications by authors named "Annie P Moseman"

() infection the upper respiratory tract causes a fatal CNS disease known as primary amoebic meningoencephalitis (PAM). The robust immune response to underlies the immunopathology that characterizes the disease. However, little is known about why this pathogen evades immune control.

View Article and Find Full Text PDF

The olfactory mucosa is important for both the sense of smell and as a mucosal immune barrier to the upper airway and brain. However, little is known about how the immune system mediates the conflicting goals of neuronal maintenance and inflammation in this tissue. A number of immune cell populations reside within the olfactory mucosa and yet we have little understanding of how these resident olfactory immune cells functionally interact with the chemosensory environment.

View Article and Find Full Text PDF

Phylogenetically and antigenically distinct influenza A and B viruses (IAV and IBV) circulate in human populations, causing widespread morbidity. Antibodies (Abs) that bind epitopes conserved in both IAV and IBV hemagglutinins (HAs) could protect against disease by diverse virus subtypes. Only one reported HA Ab, isolated from a combinatorial display library, protects against both IAV and IBV.

View Article and Find Full Text PDF

While blood antibodies mediate protective immunity in most organs, whether they protect nasal surfaces in the upper airway is unclear. Using multiple viral infection models in mice, we found that blood-borne antibodies could not defend the olfactory epithelium. Despite high serum antibody titers, pathogens infected nasal turbinates, and neurotropic microbes invaded the brain.

View Article and Find Full Text PDF

Human respiratory syncytial virus (RSV) is a major pediatric respiratory pathogen. The attachment (G) and fusion (F) glycoproteins are major neutralization and protective antigens. RSV G is expressed as membrane-anchored (mG) and -secreted (sG) forms, both containing a central fractalkine-like CX3C motif.

View Article and Find Full Text PDF

Recognition of microbial components is critical for activation of TLRs, subsequent innate immune signaling, and directing adaptive immune responses. The DNA sensor TLR9 traffics from the endoplasmic reticulum to endolysosomal compartments where it is cleaved by resident proteases to generate a competent receptor. Activation of TLR9 by CpG-motif containing oligodeoxynucleotides (CpG ODNs) is preceded by agonist endocytosis and delivery into the endolysosomes.

View Article and Find Full Text PDF

Feedback control is an important regulatory process in biological systems, which confers robustness against external and internal disturbances. Genes involved in feedback structures are therefore likely to have a major role in regulating cellular processes. Here we rely on a dynamic Bayesian network approach to identify feedback loops in cell cycle regulation.

View Article and Find Full Text PDF

An orchestrated balance of pro- and antiinflammatory cytokine release is critical for an innate immune response sufficient for pathogen defense without excessive detriment to host tissues. By using an unbiased forward genetic approach, we previously reported that IL-1R-associated kinase 1 binding protein 1 (IRAK1BP1) down-modulates Toll-like receptor-mediated transcription of several proinflammatory cytokines. To gain insights into the physiological relevance of the inhibitory role of IRAK1BP1 in inflammation, we generated mutant mice lacking IRAK1BP1.

View Article and Find Full Text PDF

Despite the growing understanding of pdgf signaling, studies of pdgf function have encountered two major obstacles: the functional redundancy of PDGFRalpha and PDGFRbeta in vitro and their distinct roles in vivo. Here we used wild-type mouse embryonic fibroblasts (MEF), MEF null for either PDGFRalpha, beta, or both to dissect PDGF-PDGFR signaling pathways. These four PDGFR genetically defined cells provided us a platform to study the relative contributions of the pathways triggered by the two PDGF receptors.

View Article and Find Full Text PDF

Natural products derived from plants provide a rich source for development of new anticancer drugs. Dulxanthone A was found to be an active cytotoxic component in Garcinia cowa by bioactivity-directed isolation. Studies to elucidate the cytotoxic mechanisms of dulxanthone A showed that dulxanthone A consistently induced S phase arrest and apoptosis in the most sensitive cell line HepG2.

View Article and Find Full Text PDF

The receptor tyrosine kinase/PI3K/Akt/mammalian target of rapamycin (RTK/PI3K/Akt/mTOR) pathway is frequently altered in tumors. Inactivating mutations of either the TSC1 or the TSC2 tumor-suppressor genes cause tuberous sclerosis complex (TSC), a benign tumor syndrome in which there is both hyperactivation of mTOR and inhibition of RTK/PI3K/Akt signaling, partially due to reduced PDGFR expression. We report here that activation of PI3K or Akt, or deletion of phosphatase and tensin homolog (PTEN) in mouse embryonic fibroblasts (MEFs) also suppresses PDGFR expression.

View Article and Find Full Text PDF

Histone modifications and DNA methylation are epigenetic phenomena that play a critical role in many neoplastic processes, including silencing of tumor suppressor genes. One such histone modification, particularly at H3 and H4, is methylation at specific lysine (K) residues. Whereas histone methylation of H3-K9 has been linked to DNA methylation and aberrant gene silencing in cancer cells, no such studies of H3-K27 have been reported.

View Article and Find Full Text PDF