Higher cyclooxygenase 2 (COX-2) expression is often observed in aggressive colorectal cancers (CRCs). Here, we attempt to examine the association between COX-2 expression in therapy-refractory CRC, how it affects chemosensitivity, and whether, in primary tumors, it is predictive of clinical outcomes. Our results revealed higher COX-2 expression in chemoresistant CRC cells and tumor xenografts.
View Article and Find Full Text PDFSPARC, a matricellular protein with tumor suppressor properties in certain human cancers, was initially identified in a genome-wide analysis of differentially expressed genes in chemotherapy resistance. Its exciting new role as a potential chemosensitizer arises from its ability to augment the apoptotic cascade, although the exact mechanisms are unclear. This study further examines the mechanism by which SPARC may be promoting apoptosis and identifies a smaller peptide analogue with greater chemosensitizing and tumor-regressing properties than the native protein.
View Article and Find Full Text PDFSubstrate use switches from fatty acids toward glucose in pressure overload-induced cardiac hypertrophy with an acceleration of glycolysis being characteristic. The activation of AMP-activated protein kinase (AMPK) observed in hypertrophied hearts provides one potential mechanism for the acceleration of glycolysis. Here, we directly tested the hypothesis that AMPK causes the acceleration of glycolysis in hypertrophied heart muscle cells.
View Article and Find Full Text PDFThis study compared the in vitro versus in vivo effects of flecainide on effective refractory period (ERP) in atrial and ventricular tissue in rabbits. Flecainide (a class 1c agent) was chosen, on the basis of its known pharmacological profile and antiarrhythmic actions, to provide a reference compound for investigating models that suitably predict the clinical effects of antiarrhythmics. The rabbit models used were those previously described by Lowe et al.
View Article and Find Full Text PDFProc West Pharmacol Soc
January 2005
This study assessed the effects of E4031 and quinidine on refractoriness (ERP) in a new in vivo model in rabbits. Following sinoatrial (SAN) and atrioventricular node (AVN) ablation ERP was determined in atria and ventricles with the shortest S1-S2 interval eliciting a second electrogram defined as the ERP. The effects of E4031 and quinidine (dose ranges 1-8 micromol/kg) were compared.
View Article and Find Full Text PDF