Publications by authors named "Annie J Aubry"

Catch a tiger by the tail: We have demonstrated that by feeding nonmotile mutant C. jejuni bacteria with a neutral azide-labelled pseudaminic acid precursor we can restore their ability to generate functional flagella. The presence of azido-pseudaminic acid on the surface of the flagella provides a bio-orthogonal chemical handle that can be used to modify the flagellar proteins.

View Article and Find Full Text PDF

Previously, we identified five genes (Cj1321 to Cj1326, of which Cj1325 and Cj1326 are a single gene) in the O-linked flagellin glycosylation island that are highly prevalent in Campylobacter jejuni isolates from chickens. We report mutagenesis, functional, and structural data to confirm that this locus, and Cj1324 in particular, has a significant contributory role in the colonization of chickens by C. jejuni.

View Article and Find Full Text PDF

It is well known that the flagellin of Campylobacter jejuni is extensively glycosylated by pseudaminic acid and the related acetamindino derivative, in addition to flagellin glycosylation being essential for motility and colonization of host cells. Recently, the use of metabolomics permitted the unequivocal characterization of unique flagellin modifications in Campylobacter, including novel legionaminic acid sugars in Campylobacter coli, which had been impossible to ascertain in earlier studies using proteomics-based approaches. To date, the precise identities of the flagellin glycosylation modifications have only been elucidated for C.

View Article and Find Full Text PDF

Glycosylation of Campylobacter flagellin is required for the biogenesis of a functional flagella filament. Recently, we used a targeted metabolomics approach using mass spectrometry and NMR to identify changes in the metabolic profile of wild type and mutants in the flagellar glycosylation locus, characterize novel metabolites, and assign function to genes to define the pseudaminic acid biosynthetic pathway in Campylobacter jejuni 81-176 (McNally, D. J.

View Article and Find Full Text PDF

Bacterial genome sequencing has provided a wealth of genetic data. However, the definitive functional characterization of hypothetical open reading frames and novel biosynthetic genes remains challenging. This is particularly true for genes involved in protein glycosylation because the isolation of their glycan moieties is often problematic.

View Article and Find Full Text PDF

A novel method employing CE-ESMS and precursor ion scanning was developed for the selective detection of nucleotide-activated sugars. By using precursor ion scanning for fragment ions specific to the different nucleotide carriers, i.e.

View Article and Find Full Text PDF