The avian gut microbiota has been the subject of considerable recent attention, with potential implications for diverse fields such as the poultry industry, microbial ecology, and conservation. Faecal microbiotas are frequently used as a non-invasive proxy for the gut microbiota, however the extraction of high-quality microbial DNA from avian faeces has often proven challenging. Here we aimed to evaluate the performance of two DNA preservation methods (95% ethanol and RNAlater) and five extraction approaches (IndiSpin Pathogen Kit, QIAamp PowerFecal Pro DNA Kit, MicroGEM PrepGEM Bacteria Kit, ZymoBIOMICS DNA Miniprep Kit, and an in-house phase separation-based method) for studying the avian gut microbiota.
View Article and Find Full Text PDFBackground: The critically endangered kākāpō is a flightless, nocturnal parrot endemic to Aotearoa New Zealand. Recent efforts to describe the gastrointestinal microbial community of this threatened herbivore revealed a low-diversity microbiota that is often dominated by Escherichia-Shigella bacteria. Given the importance of associated microbial communities to animal health, and increasing appreciation of their potential relevance to threatened species conservation, we sought to better understand the development of this unusual gut microbiota profile.
View Article and Find Full Text PDFBackground: The Aotearoa New Zealand takahē (Porphyrio hochstetteri), once thought to be extinct, is a nationally threatened flightless rail under intensive conservation management. While there has been previous research into disease-related microbes in takahē, little is known about the microbes present in the gastrointestinal tract. Given the importance of gut-associated microbes to herbivore nutrition and immunity, knowledge of these communities is likely to be of considerable conservation value.
View Article and Find Full Text PDFHuman microbiome studies remain focused on bacteria, as they comprise the dominant component of the microbiota. Recent advances in sequencing technology and optimization of amplicon sequencing protocols have allowed the description of other members of the microbiome, including eukaryotes (fungi) and, most recently, archaea. There are no known human-associated archaeal pathogens.
View Article and Find Full Text PDF