Publications by authors named "Annick Vanhulsel"

Sulfur particles with a conductive polymer coating of poly(3,4-ethylene dioxythiophene) "PEDOT" were prepared by dielectric barrier discharge (DBD) plasma technology under atmospheric conditions (low temperature, ambient pressure). We report a solvent-free, low-cost, low-energy-consumption, safe, and low-risk process to make the material development and production compatible for sustainable technologies. Different coating protocols were developed to produce PEDOT-coated sulfur powders with electrical conductivity in the range of 10-10 S/cm.

View Article and Find Full Text PDF

Lignocellulose represents a potential supply of sustainable feedstock for the production of biofuels and chemicals. There is, however, an important cost and efficiency challenge associated with the conversion of such lignocellulosics. Because its structure is complex and not prone to undergo chemical reactions very easily, chemical and mechanical pretreatments are usually necessary to be able to refine them into the compositional building blocks (carbohydrates and lignin) from which value-added platform molecules, such as glucose, ethylene glycol, 5-hydroxymethylfurfural, and levulinic acid, and biofuels, such as bioderived naphtha, kerosene, and diesel fractions, will be produced.

View Article and Find Full Text PDF

A promising method for the production of few-layer graphene (FLG) is microwave plasma-enhanced chemical vapour deposition (MW PECVD). However, the growth mechanism of PECVD-synthesized FLG is not completely understood. The aim of this work was to investigate the initial stages of the growth process of FLG deposited by MW PECVD on several substrates (quartz, silicon, platinum).

View Article and Find Full Text PDF

If graphene is ever going to live up to the promises of future nanoelectronic devices, an easy and cheap route for mass production is an essential requirement. A way to extend the capabilities of plasma-enhanced chemical vapour deposition to the synthesis of freestanding few-layer graphene is presented. Micrometre-wide flakes consisting of four to six atomic layers of stacked graphene sheets have been synthesized by controlled recombination of carbon radicals in a microwave plasma.

View Article and Find Full Text PDF