Arabinoxylan (AX) is among the most abundant hemicelluloses on earth and one of the major components of feedstocks that are currently investigated as a source for advanced biofuels. As global research into these sustainable biofuels is increasing, scientific knowledge about the enzymatic breakdown of AX advanced significantly over the last decade. This review focuses on the exo-acting AX hydrolases, such as α-arabinofuranosidases and β-xylosidases.
View Article and Find Full Text PDFIn this paper, the content of all major carbohydrates and the spatial distribution of starch, arabinoxylan and β-glucan in developing wheat kernels (Triticum aestivum L. var. Homeros) from anthesis until maturity were studied.
View Article and Find Full Text PDFSelecting wall-nibblers: Three 4-nitrocatechol derivatives were designed to facilitate high-throughput screening of arabinofuranose hydrolases, enzymes that typically digest plant cell walls. The designed compounds can be used in solid and liquid media, and, importantly, one allows the specific detection of AXH-d, a specialized enzyme that only releases L-arabinose from disubstituted D-xylosyl moieties.
View Article and Find Full Text PDFAn improved method for the measurement of fructans in wheat grains is presented. A mild acid treatment is used for fructan hydrolysis, followed by analysis of the released glucose and fructose with high performance anion exchange chromatography with pulsed amperometric detection (HPAEC-PAD). Not only the amount of fructose set free from fructans but also the released glucose can be quantified accurately, allowing determination of the average degree of polymerization of fructans (DP(av)).
View Article and Find Full Text PDFBall milling was used for producing complex arabinoxylan oligosaccharides (AXOS) and low molecular mass arabinoxylans (AX) from wheat bran, pericarp-enriched wheat bran, and psyllium seed husk. The arabinose to xylose ratio of the samples produced varied between 0.14 and 0.
View Article and Find Full Text PDFEnzyme Microb Technol
August 2011
In biomass degradation using simultaneous saccharification and fermentation (SSF), there is a need for efficient biomass degrading enzymes that can work at lower temperatures suitable for yeast fermentation. As xylan is an important lignocellulosic biomass constituent, this study aimed at investigating the possible differences in xylan breakdown potential of endoxylanases using eight different endoxylanases at conditions relevant for SSF. Both solubilising and degrading capacities of the endoxylanases were investigated using water-insoluble and water-soluble oat spelt xylan as model substrates for biomass xylan.
View Article and Find Full Text PDFScope: Cereal arabinoxylan (AX) is one of the main dietary fibers in a balanced human diet. To gain insight into the importance of structural features of AX for their prebiotic potential and intestinal fermentation properties, a rat trial was performed.
Methods And Results: A water unextractable AX-rich preparation (WU-AX, 40% purity), water extractable AX (WE-AX, 81% purity), AX oligosaccharides (AXOS, 79% purity) and combinations thereof were included in a standardized diet at a 5% AX level.
Xylooligosaccharides have strong bifidogenic properties and are increasingly used as a prebiotic. Nonetheless, little is known about the degradation of these substrates by bifidobacteria. We characterized two recombinant β-xylosidases, XylB and XylC, with different substrate specificities from Bifidobacterium adolescentis.
View Article and Find Full Text PDFThe secondary substrate binding site (SBS) of Bacillus subtilis and Aspergillus niger glycoside hydrolase family 11 xylanases was studied by site-directed mutagenesis and evaluation of activity and binding properties of mutant enzymes on different substrates. Modification of the SBS resulted in an up to three-fold decrease in the relative activity of the enzymes on polymeric versus oligomeric substrates and highlighted the importance of several amino acids in the SBS forming hydrogen bonds or hydrophobic stacking interactions with substrates. Weakening of the SBS increased K(d) values by up to 70-fold in binding affinity tests using natural substrates.
View Article and Find Full Text PDFActa Crystallogr Sect F Struct Biol Cryst Commun
January 2011
Endo-β-1,4-D-xylanases are used in a multitude of industrial applications. Native crystals of a cold-adapted xylanase from glycoside hydrolase family 8 were obtained by the vapour-diffusion technique. The crystals belonged to space group I222, with unit-cell parameters a=46.
View Article and Find Full Text PDFBifidobacterium adolescentis possesses several arabinofuranosidases able to hydrolyze arabinoxylans (AX) and AX oligosaccharides (AXOS), the latter being bifidogenic carbohydrates with potential prebiotic properties. We characterized two new recombinant arabinofuranosidases, AbfA and AbfB, and AXH-d3, a previously studied arabinofuranosidase from B. adolescentis.
View Article and Find Full Text PDFThe potential of glycoside hydrolase family (GH) 8 xylanases in biotechnological applications is virtually unexplored. Therefore, the substrate preference and hydrolysis product profiles of two GH8 xylanases were evaluated to investigate their activities and substrate specificities. A GH8 xylanase from an uncultured bacterium (rXyn8) shows endo action but very selectively releases xylotriose from its substrates.
View Article and Find Full Text PDFXylanases are of widespread importance in several food and non-food biotechnological applications. They degrade heteroxylans, a structurally heterogeneous group of plant cell wall polysaccharides, and other important components in various industrial processes. Because of the highly complex structures of heteroxylans, efficient utilization of xylanases in these processes requires an in-depth knowledge of their substrate specificity.
View Article and Find Full Text PDFGlycoside hydrolase family (GH) 11 xylanase A from Bacillus subtilis (BsXynA) was subjected to site-directed mutagenesis to probe the role of aglycon active site residues with regard to activity, binding of decorated substrates and hydrolysis product profile. Targets were those amino acids identified to be important by 3D structure analysis of BsXynA in complex with substrate bound in the glycon subsites and the +1 aglycon subsite. Several aromatic residues in the aglycon subsites that make strong substrate-protein interactions and that are indispensable for enzyme activity, were also important for the specificity of the xylanase.
View Article and Find Full Text PDFTriticum aestivum xylanase inhibitor (TAXI)-type inhibitors are active against microbial xylanases from glycoside hydrolase family 11, but the inhibition strength and the specificity towards different xylanases differ between TAXI isoforms. Mutational and biochemical analyses of TAXI-I, TAXI-IIA and Bacillus subtilis xylanase A showed that inhibition strength and specificity depend on the identity of only a few key residues of inhibitor and xylanase [Fierens K et al. (2005) FEBS J 272, 5872-5882; Raedschelders G et al.
View Article and Find Full Text PDFEnzyme intramolecular mobility and conformational changes of loops in particular play a significant role in biocatalysis. In this respect, the highly conserved thumb loop of glycoside hydrolase family (GH) 11 xylanases is an intriguing and characteristic structural element, of which the true dynamic nature and function in catalysis is still unknown. Crystallographic analysis of the structure of a Bacillus subtilis xylanase A mutant, found as a dimer in an asymmetric unit, revealed that the thumb region can adopt an extended conformation, which is stabilized in the crystal lattice through intermolecular contacts.
View Article and Find Full Text PDFThe family 8 glycoside hydrolase (RexA) from Bifidobacterium adolescentis was expressed in Escherichia coli. The recombinant enzyme was characterized as a reducing-end xylose-releasing exo-oligoxylanase. Apart from giving insights into this new class of enzymes, knowledge of the RexA enzyme helps to postulate a mechanism for the B.
View Article and Find Full Text PDFBiochem Biophys Res Commun
May 2007
Endo-beta-1,4-xylanase X-I is a major hydrolase produced by the aleurone tissue of germinating barley grain. It was previously reported that this cytosolic enzyme is synthesized as an inactive precursor which is proteolytically processed to active forms upon its programmed cell death dependent release. We here demonstrate, however, that the precursor form of X-I is an active enzyme.
View Article and Find Full Text PDF