Oxaliplatin (Eloxatin) is a third-generation platinum derivative with an in vitro and in vivo spectrum of activity distinct from that of cisplatin, especially in colon cancer cells. Here, we studied the molecular basis of this difference on the HCT-116 human colon carcinoma cell line (mismatch repair-deficient, wild-type functional p53). Oxaliplatin inhibited HCT-116 cell proliferation with greater efficacy than cisplatin.
View Article and Find Full Text PDFWe investigated the molecular events involved in the long-lasting reduction of adipose mass by the selective CB1 antagonist, SR141716. Its effects were assessed at the transcriptional level both in white (WAT) and brown (BAT) adipose tissues in a diet-induced obesity model in mice. Our data clearly indicated that SR141716 reversed the phenotype of obese adipocytes at both macroscopic and genomic levels.
View Article and Find Full Text PDFIn the thymus, during T-cell differentiation, the expression of the peripheral benzodiazepine receptor (PBR) modulates. The protein level decreases between the double negative and double positive stages, and then increases when thymocytes become single positive. We addressed the role played by PBR in T-cell maturation.
View Article and Find Full Text PDFSR31747A is a sigma ligand that exhibits a potent antitumoral activity on various human tumor cell lines both in vitro and in vivo. To understand its mode of action, we used DNA microarray technology combined with a new bioinformatic approach to identify genes that are modulated by SR31747A in different human breast or prostate cancer cell lines. The SR31747A transcriptional signature was also compared with that of seven different representative anticancer drugs commonly used in the clinic.
View Article and Find Full Text PDFSR31747A is an immunosuppressive agent that arrests cell proliferation in the yeast Saccharomyces cerevisiae. In this microorganism, SR31747A was shown to inhibit the ERG2 gene product, namely the delta8-delta7 sterol isomerase, involved in the ergosterol biosynthesis pathway. Although previous genetic experiments pointed to this enzyme as the target for SR31747A in yeast, the existence of other potential targets could not be ruled out.
View Article and Find Full Text PDF