Publications by authors named "Annick Moing"

Article Synopsis
  • The study focuses on the metabolite contents of ripe peppers and eggplants, emphasizing the differences and similarities in their development compared to tomatoes.
  • Researchers collected and quantified various polar metabolites from fruit samples at different growth stages, using advanced nuclear magnetic resonance technology.
  • A total of 24 metabolites in pepper and 27 in eggplant were identified, with 19 shared between the two, providing a foundation for further research on fruit metabolism across different species.
View Article and Find Full Text PDF

Introduction: A better understanding of the physiological response of silage maize to a mild reduction in nitrogen (N) fertilization and the identification of predictive biochemical markers of N utilization efficiency could contribute to limit the detrimental effect of the overuse of N inputs.

Objectives: We integrated phenotypic and biochemical data to interpret the physiology of maize in response to a mild reduction in N fertilization under agronomic conditions and identify predictive leaf metabolic and proteic markers that could be used to pilot and rationalize N fertilization.

Methods: Eco-physiological, developmental and yield-related traits were measured and complemented with metabolomic and proteomic approaches performed on young leaves of a core panel of 29 European genetically diverse dent hybrids cultivated in the field under non-limiting and reduced N fertilization conditions.

View Article and Find Full Text PDF

Background: Abiotic stresses in plants include all the environmental conditions that significantly reduce yields, like drought and heat. One of the most significant effects they exert at the cellular level is the accumulation of reactive oxygen species, which cause extensive damage. Plants possess two mechanisms to counter these molecules, i.

View Article and Find Full Text PDF

The formulation of sustainable fish feeds based on plant ingredients supplemented by alternative ingredients to plant (insect, micro-algae, yeast) and genetic selection of fish for plant-based diets were tested on rainbow trout in two separate experiments. Plant-based diets and corresponding diets supplemented with an ingredient mix: insect, micro-algae and yeast in Experiment A, and insect and yeast in Experiment B were compared to commercial-like diets. In experiment A, the mix-supplemented diet was successful in compensating the altered growth performance of fish fed their respective plant-based diet compared to those fed the commercial diet, by restoring feed conversion.

View Article and Find Full Text PDF

Although primary metabolism is well conserved across species, it is useful to explore the specificity of its network to assess the extent to which some pathways may contribute to particular outcomes. Constraint-based metabolic modelling is an established framework for predicting metabolic fluxes and phenotypes and helps to explore how the plant metabolic network delivers specific outcomes from temporal series. After describing the main physiological traits during fruit development, we confirmed the correlations between fruit relative growth rate (RGR), protein content and time to maturity.

View Article and Find Full Text PDF

Background: The composition of ripe fruits depends on various metabolites which content evolves greatly throughout fruit development and may be influenced by the environment. The corresponding metabolism regulations have been widely described in tomato during fruit growth and ripening. However, the regulation of other metabolites that do not show large changes in content have scarcely been studied.

View Article and Find Full Text PDF

Introduction: Absolute quantification of individual metabolites in complex biological samples is crucial in targeted metabolomic profiling.

Objectives: An inter-laboratory test was performed to evaluate the impact of the NMR software, peak-area determination method (integration vs. deconvolution) and operator on quantification trueness and precision.

View Article and Find Full Text PDF

Acerola ( D.C.) is an exotic fruit with high agro-industrial potential due to its high content of ascorbic acid (AA), phenolic compounds, and carotenoid pigments.

View Article and Find Full Text PDF

Introduction: Accuracy of feature annotation and metabolite identification in biological samples is a key element in metabolomics research. However, the annotation process is often hampered by the lack of spectral reference data in experimental conditions, as well as logistical difficulties in the spectral data management and exchange of annotations between laboratories.

Objectives: To design an open-source infrastructure allowing hosting both nuclear magnetic resonance (NMR) and mass spectra (MS), with an ergonomic Web interface and Web services to support metabolite annotation and laboratory data management.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigated fruit development stages in plantain bananas, focusing on enzyme activity and metabolic changes over 2-12 weeks post-emergence.
  • Researchers identified key processes like starch accumulation (up to 48% of dry weight) and the role of specific enzymes in starch synthesis and breakdown, as well as ripening initiation.
  • The findings hold potential for improving harvesting strategies and breeding practices to enhance fruit quality and reduce post-harvest losses.
View Article and Find Full Text PDF

The long-term effect of a plant (P)-based diet was assessed by proton nuclear magnetic resonance (H-NMR) metabolomics in rainbow trout fed a marine fish meal (FM)-fish oil (FO) diet (M), a P-based diet and a control commercial-like diet (C) starting with the first feeding. Growth performances were not heavily altered by long-term feeding on the P-based diet. An H-NMR metabolomic analysis of the feed revealed significantly different soluble chemical compound profiles between the diets.

View Article and Find Full Text PDF

The trade-off between yield and quality, a major problem for the production of fleshy fruits, involves fruit expansive growth and sugar metabolism. Here we developed an integrative model by coupling a biophysical model of fleshy fruit growth processes, including water and carbon fluxes and organ expansion, with an enzyme-based kinetic model of sugar metabolism to better understand the interactions between these two processes. The integrative model was initially tested on tomato fruit, a model system for fleshy fruit.

View Article and Find Full Text PDF

Peaches and nectarines [ (L.) Batsch] are among the most exported fresh fruit from Chile to the Northern Hemisphere. Fruit acceptance by final consumers is defined by quality parameters such as the size, weight, taste, aroma, color, and juiciness of the fruit.

View Article and Find Full Text PDF

In Northern Europe, sowing maize one-month earlier than current agricultural practices may lead to moderate chilling damage. However, studies of the metabolic responses to low, non-freezing, temperatures remain scarce. Here, genetically-diverse maize hybrids (Zea mays, dent inbred lines crossed with a flint inbred line) were cultivated in a growth chamber at optimal temperature and then three decreasing temperatures for 2 days each, as well as in the field.

View Article and Find Full Text PDF

Besides structural information, magnetic resonance imaging (MRI) is crucial to reveal the presence and gradients of metabolites in organs constituted of several tissues. In plant science, such knowledge is key to better understand fruit development and metabolism. Routine methods based on fixation for cytological studies or dissection for metabolite measurements induce biases and plant sample destruction.

View Article and Find Full Text PDF

Metabolomics plays a pivotal role in systems biology, and NMR is a central tool with high precision and exceptional resolution of chemical information. Most NMR metabolomic studies are based on H 1D spectroscopy, severely limited by peak overlap. C NMR benefits from a larger signal dispersion but is barely used in metabolomics due to ca.

View Article and Find Full Text PDF

Background: Plant raw materials are commonly used in aquafeeds, as marine resources are unsustainable. However, full plant-based diets lead to poorer fish growth performance.

Objective: We aimed to understand the metabolic effects of a yeast fraction as a protein supplement in a plant-based diet and to integrate such effects with phenotypic traits as a new approach to assess the interest of this raw material.

View Article and Find Full Text PDF

Cell fate maintenance is an integral part of plant cell differentiation and the production of functional cells, tissues, and organs. Fleshy fruit development is characterized by the accumulation of water and solutes in the enlarging cells of parenchymatous tissues. In tomato (), this process is associated with endoreduplication in mesocarp cells.

View Article and Find Full Text PDF

Fleshy fruits are very varied, whether in terms of their composition, physiology, or rate and duration of growth. To understand the mechanisms that link metabolism to phenotypes, which would help the targeting of breeding strategies, we compared eight fleshy fruit species during development and ripening. Three herbaceous (eggplant, pepper, and cucumber), three tree (apple, peach, and clementine) and two vine (kiwifruit and grape) species were selected for their diversity.

View Article and Find Full Text PDF

Over the past 10 years, knowledge about several aspects of fruit metabolism has been greatly improved. Notably, high-throughput metabolomic technologies have allowed quantifying metabolite levels across various biological processes, and identifying the genes that underly fruit development and ripening. This Special Issue is designed to exemplify the current use of metabolomics studies of temperate and tropical fruit for basic research as well as practical applications.

View Article and Find Full Text PDF

Background And Aims: Sugar concentration is a key determinant of fruit quality. Soluble sugars and starch concentrations in fruits vary greatly from one species to another. The aim of this study was to investigate similarities and differences in sugar accumulation strategies across ten contrasting fruit species using a modelling approach.

View Article and Find Full Text PDF

Understanding the molecular mechanisms controlling the accumulation of grain storage proteins in response to nitrogen (N) and sulfur (S) nutrition is essential to improve cereal grain nutritional and functional properties. Here, we studied the grain transcriptome and metabolome responses to postanthesis N and S supply for the diploid wheat einkorn (). During grain filling, 848 transcripts and 24 metabolites were differentially accumulated in response to N and S availability.

View Article and Find Full Text PDF

The broad variability of (melon, Cucurbitaceae) presents a challenge to conventional classification and organization within the species. To shed further light on the infraspecific relationships within , we compared genotypic and metabolomic similarities among 44 accessions representative of most of the cultivar-groups. Genotyping-by-sequencing (GBS) provided over 20,000 single-nucleotide polymorphisms (SNPs).

View Article and Find Full Text PDF

Nutrition of high trophic species in aquaculture is faced with the development of sustainable plant-based diets. Insects seem particularly promising for supplementing plant-based diets. However, the complex effect of whole insect meal on fish metabolism is not well understood, and even less is known about insect meal extracts.

View Article and Find Full Text PDF