Publications by authors named "Annick Fraichard"

Nonsense-Mediated mRNA Decay (NMD) is a key control mechanism of RNA quality widely described to target mRNA harbouring Premature Termination Codon (PTC). However, recent studies suggested the existence of non-canonical pathways which remain unresolved. One of these alternative pathways suggested that specific mRNA could be targeted through their 3' UTR (Untranslated Region), which contain various elements involved in mRNA stability regulation.

View Article and Find Full Text PDF

The pathway of selective autophagy, leading to a targeted elimination of specific intracellular components, is mediated by the ATG8 proteins, and has been previously suggested to be involved in the regulation of the Epithelial-mesenchymal transition (EMT) during cancer's etiology. However, the molecular factors and steps of selective autophagy occurring during EMT remain unclear. We therefore analyzed a cohort of lung adenocarcinoma tumors using transcriptome analysis and immunohistochemistry, and found that the expression of genes is correlated with that of EMT-related genes, and that GABARAPL1 protein levels are increased in EMT+ tumors compared to EMT- ones.

View Article and Find Full Text PDF

EMT is a reversible cellular process that is linked to gene expression reprogramming, which allows for epithelial cells to undergo a phenotypic switch to acquire mesenchymal properties. EMT is associated with cancer progression and cancer therapeutic resistance and it is known that, during the EMT, many stress response pathways, such as autophagy and NMD, are dysregulated. Therefore, our goal was to study the regulation of ATG8 family members (, ) by the NMD and to identify molecular links between these two cellular processes that are involved in tumor development and metastasis formation.

View Article and Find Full Text PDF

The Atg8-family proteins are subdivided into two subfamilies: the GABARAP and LC3 subfamilies. These proteins, which are major players of the autophagy pathway, present a conserved glycine in their C-terminus necessary for their association to the autophagosome membrane. This family of proteins present multiple roles from autophagy induction to autophagosome-lysosome fusion and have been described to play a role during cancer progression.

View Article and Find Full Text PDF

The GABARAPL1 protein belongs to the ATG8 family whose members are involved in autophagy. Our laboratory previously demonstrated that GABARAPL1 associates with autophagic vesicles, regulates autophagic flux and acts as a tumor suppressor protein in breast cancer. In this study, we aimed to determine whether GABARAPL1 conjugation to autophagosomes is necessary for its tumor suppressive functions using the MCF-7 breast cancer cell line overexpressing GABARAPL1 or a G116A mutant, which is unable to be lipidated and associated to autophagosomes.

View Article and Find Full Text PDF
Article Synopsis
  • The GABARAP family members play key roles in receptor transport and the autophagy process, with downregulated GABARAPL1 linked to poor prognosis in breast cancer patients.
  • Research utilized qRT-PCR, western blotting, and epigenetic quantification to investigate how epigenetic changes affect GABARAP family expression in breast cancer.
  • Findings indicate that reduced GABARAPL1 expression is associated with DNA methylation and histone deacetylation, suggesting that targeting epigenetic mechanisms and CREB-1 modulation could help in developing treatments for breast cancer.
View Article and Find Full Text PDF

GABARAPL1/GEC1 is an early estrogen-induced gene which encodes a protein highly conserved from C. elegans to humans. Overexpressed GABARAPL1 interacts with GABAA or kappa opioid receptors, associates with autophagic vesicles, and inhibits breast cancer cell proliferation.

View Article and Find Full Text PDF

Macroautophagy is a highly conserved cellular degradation process, regulated by autophagy-related (atg) factors, in which a double membrane autophagosome engulfs cytoplasmic components to target them for degradation. In yeast, the Atg8 protein is indispensable for autophagosome formation. In mammals, this is complicated by the presence of six Atg8 homologues grouped into the GABARAP and MAP1LC3 subfamilies.

View Article and Find Full Text PDF

GABARAPL1 belongs to the small family of GABARAP proteins (including GABARAP, GABARAPL1 and GABARAPL2/GATE-16), one of the two subfamilies of the yeast Atg8 orthologue. GABARAPL1 is involved in the intracellular transport of receptors, via an interaction with tubulin and GABA(A) or kappa opioid receptors, and also participates in autophagy and cell proliferation. In the present study, we identify the HSP90 protein as a novel interaction partner for GABARAPL1 using GST pull-down, mass spectrometry and coimmunoprecipitation experiments.

View Article and Find Full Text PDF

Atg8 is a yeast protein involved in the autophagic process and in particular in the elongation of autophagosomes. In mammals, several orthologs have been identified and are classed into two subfamilies: the LC3 subfamily and the GABARAP subfamily, referred to simply as the LC3 or GABARAP families. GABARAPL1 (GABARAP-like protein 1), one of the proteins belonging to the GABARAP (GABA(A) receptor-associated protein) family, is highly expressed in the central nervous system and implicated in processes such as receptor and vesicle transport as well as autophagy.

View Article and Find Full Text PDF

The GABARAPL1 (GABARAP-LIKE 1) gene was first described as an early estrogen-regulated gene that shares a high sequence homology with GABARAP and is thus a part of the GABARAP family. GABARAPL1, like GABARAP, interacts with the GABAA receptor and tubulin and promotes tubulin polymerization. The GABARAP family members (GABARAP, GABARAPL1 and GABARAPL2) and their close homologs (LC3 and Atg8) are not only involved in the transport of proteins or vesicles but are also implicated in various mechanisms such as autophagy, cell death, cell proliferation and tumor progression.

View Article and Find Full Text PDF

Gabarapl1 (gec1) was first described as an estrogen regulated gene which shares a high sequence homology with the gabarap gene. We previously demonstrated that GABARAPL1, like GABARAP, interacts with the GABAA receptor and tubulin and promotes tubulin polymerization. Previous work has demonstrated that the GABARAP family members (GABARAP, LC3, GATE-16 and Atg8) are not only involved in the transport of proteins or vesicles but are also implicated in various mechanisms such as autophagy, cell death, cell proliferation and tumor progression.

View Article and Find Full Text PDF

The timely regulation of gonadotropin-releasing hormone (GnRH) secretion requires a GABAergic signal. We hypothesized that GEC1, a protein promoting the transport of GABA(A) receptors, could represent a circadian effector in GnRH neurons. First, we demonstrated that gec1 is co-expressed with the GABA(A) receptor in hypothalamic rat GnRH neurons.

View Article and Find Full Text PDF

GEC1 protein shares high identity with GABARAP (GABA(A) Receptor-Associated Protein), interacts with tubulin and GABA(A) receptors and is potentially involved in intracellular transport processes. Recently, using quantitative real time PCR, we have reported the gec1 mRNA expression in different rat brain areas. In the present study, we investigated the cell types expressing gec1 in rat brain.

View Article and Find Full Text PDF

GABARAP and GEC1/GABARAPL1 interact with tubulin and GABA(A) receptor and belong to a new protein family. This family includes GATE 16 and LC3, potentially involved in intracellular transport processes. In this study, we combined brain dissection and quantitative real-time reverse transcription polymerase chain reaction to study discriminatively gabarap, gec1/gabarapL1, gate16/gabarapL2, lc3 mRNA distribution in multiple rat brain areas.

View Article and Find Full Text PDF

The gec1/GABARAPL1 (GABA(A)-receptor-associated protein like-1) gene has been identified as an early estrogen-regulated gene in guinea-pig cultured endometrial glandular epithelial cells (GEC). Guinea-pig and human gec1/GABARAPL1 proteins share 87% identity with GABARAP, which acts as a protein linker between microtubules and the GABA(A) receptor. To investigate the molecular mechanisms regulating gec1/GABARAPL1 gene expression, the 1.

View Article and Find Full Text PDF

We have previously identified in uterine cells a novel estrogen-regulated gene called gec1. GEC1 presents 87% identity with GABARAP which, so far, was the only protein found to associate with tubulin and GABA(A) receptor. We demonstrated then that GEC1 interacts in vitro with tubulin and GABA(A) receptor, and promotes tubulin assembly and microtubule bundling.

View Article and Find Full Text PDF
Article Synopsis
  • GABARAP and gec1/GABARAPL1 are genes that code for similar proteins in a new family of microtubule-associated proteins (MAPs).
  • These proteins may play a role in clustering, targeting, or degrading GABA(A) receptors on neurons' post-synaptic membranes.
  • In a study of 76 human tissues, gec1/GABARAPL1 was found to be more expressed in the central nervous system, while GABARAP had higher expression in endocrine glands.
View Article and Find Full Text PDF