Polarization modulation-infrared reflection absorption spectroscopy (PM-IRRAS) was employed to analyze two unique samples: (1) an industrially prepared alkoxysilane-pretreated aluminum alloy (AA6111) in the absence and presence of a ~600-nm-thick lubricant coating and (2) a chemical warfare agent simulant, triethyl phosphate (TEP), on glass. For the pretreated aluminum samples, PM-IRRAS spectra were analyzed for three distinct regions; the SiO stretching vibration around 1120 cm(-1), the NH(2) bending mode at ~1600 cm(-1) and the CH stretching region around 2900 cm(-1). Our results showed that increasing the curing temperature (from 55 to 100 °C) improved the overall extent of cross-linking within the siloxane network.
View Article and Find Full Text PDFThe formation of aromatic SAMs on Au(111) using three nitro-substituted arene sulfenyl chlorides (4-nitrophenyl sulfenyl chloride (1), 2-nitrophenyl sulfenyl chloride (2), and 2,4-dinitrophenyl sulfenyl chloride (3)) is studied. The formation of SAMs and their quality are investigated as a function of the position of the nitro substituent(s) on the aromatic ring. The modified surfaces are characterized by X-ray photoelectron spectroscopy (XPS), scanning tunneling microscopy (STM), polarization modulation infrared reflection absorption spectroscopy (PMIRRAS), and cyclic voltammetry (CV).
View Article and Find Full Text PDFPolarization modulation-infrared reflection absorption spectroscopy (PM-IRRAS) was employed to detect the chemical warfare agent (CWA) simulant triethyl phosphate (TEP) on gold, as well as on US military paint, i.e., chemical agent resistant coating (CARC).
View Article and Find Full Text PDFIn this study, a Au(111) electrode is functionalized with a monolayer of 1-thio-β-D-glucose (β-Tg), producing a hydrophilic surface. A monolayer of β-Tg was formed on a Au(111) surface by either (1) potential-assisted deposition with the thiol in a supporting electrolyte or (2) passive incubation of a gold substrate in a thiol-containing solution. For each method, the properties of the β-Tg monolayer were investigated using cyclic voltammetry (CV), differential capacitance (DC), and chronocoulometry.
View Article and Find Full Text PDFThe surface of a gold electrode was functionalized with a hydrophilic monolayer of 1-thio-β-D-glucose formed by spontaneous self-assembly. The Langmuir-Blodgett/Langmuir-Schaefer (LB/LS) method was then used to assemble a bilayer onto the modified Au(111) surface. The bilayer lipid membrane (BLM) was separated from the Au(111) electrode surface by incorporating the monosialoganglioside GM1 into the inner leaflet of a bilayer composed of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and cholesterol.
View Article and Find Full Text PDF