The number of patients with end-stage renal disease (ESRD) requiring hemodialysis is increasing worldwide. Although arteriovenous fistula (AVF) is the best and most important vascular access (VA) for hemodialysis, its primary maturation failure rate is as high as 60%, which seriously endangers the prognosis of hemodialysis patients. After AVF establishment, the venous outflow tract undergoes hemodynamic changes, which are translated into intracellular signaling pathway cascades, resulting in an outward and inward remodeling of the vessel wall.
View Article and Find Full Text PDFAim: Rhodojaponin VI (R-VI) is the key compound of Rhododendron molle G. Don (Ericaceae) (RM) with effective clinical application in rheumatoid arthritis and chronic glomerulonephritis. In our study, we tried to explore the effect of R-VI on the rat model of membranous nephropathy.
View Article and Find Full Text PDFActa Pharmacol Sin
November 2024
Senescence, an intricate and inevitable biological process, characterized by the gradual loss of homeostasis and declining organ functions. The pathological features of cellular senescence, including cell cycle arrest, metabolic disruptions, and the emergence of senescence-associated secretory phenotypes (SASP), collectively contribute to the intricate and multifaceted nature of senescence. Beyond its classical interaction with p53, murine double minute gene 2 (MDM2), traditionally known as an E3 ubiquitin ligase involved in protein degradation, plays a pivotal role in cellular processes governing senescence.
View Article and Find Full Text PDFChronic kidney disease (CKD) is a serious health problem worldwide, which ultimately leads to end-stage renal disease (ESRD). Renal fibrosis is the common pathway and major pathological manifestation for various CKD proceeding to ESRD. However, the underlying mechanisms and effective therapies are still ambiguous.
View Article and Find Full Text PDFRenal fibrosis is a common pathological feature of chronic kidney diseases (CKD), poses a significant burden in the aging population, and is a major cause of end-stage renal disease (ESRD). In this study, we investigated the role of G protein-coupled receptor kinases (GRKs) 5 in the pathogenesis of renal fibrosis. GRK5 is a serine/threonine kinase that regulates G protein-coupled receptor (GPCR) signaling.
View Article and Find Full Text PDFMinichromosome maintenance 6 (MCM6) has been implicated in the progression of various malignant tumors; however, its exact physiological function in kidney diseases remains unclear. Here, we demonstrated that MCM6 levels showed a significant increase in the proximal tubular cells during progressive renal fibrosis in two unrelated fibrotic models, including unilateral ureteral obstruction (UUO) and unilateral ischemia-reperfusion injury (UIRI). Depletion of MCM6 aggravated partial epithelial-mesenchymal transition, extracellular matrix accumulation, and myofibroblast activation in the kidneys of UUO or UIRI mice.
View Article and Find Full Text PDFBackground: Renal interstitial fibrosis is a common pathway for the progressive development of chronic renal diseases (CKD) with different etiology, and is the main pathological basis leading to end-stage renal disease. Although the current research on renal interstitial fibrosis is gradually deepening, the diagnosis and treatment methods are still very lacking. Uncoupling protein 1 (UCP1) is a nuclear encoded protein in mitochondria inner membrane and plays an important role in regulating energy metabolism and mitochondrial homeostasis.
View Article and Find Full Text PDFInt J Mol Sci
January 2023
In the last few decades, the prevalence of diabetes mellitus (DM) has increased rapidly. Diabetic kidney disease (DKD) is the major cause of end-stage renal disease (ESRD) globally, attributed to hemodynamic changes and chronic hyperglycemia. Recent findings have emphasized the role of cell-cycle dysregulation in renal fibrosis and ESRD.
View Article and Find Full Text PDFPurpose: In schistosomiasis-associated hepatic fibrosis, the role of murine UL16-binding protein-like transcript 1 (MULT1), the strongest ligand of natural killer group 2-member D receptor (NKG2D), remains unclear. Here, -infected mice administered with MULT1-encoding DNA were used to test MULT1 as a potential therapy for schistosomiasis-associated hepatic fibrosis and explore relevant mechanisms.
Materials And Methods: A recombinant plasmid encoding MULT1 (p-rMULT1) was constructed and administered to -infected BALB/c mice via hydrodynamic tail vein injection.
Selenium (Se), in the form of selenoproteins, is an essential micronutrient that plays an important role in human health and disease. To date, there are at least 25 selenoproteins in humans involved in a wide variety of biological functions, including mammalian development, metabolic progress, inflammation response, chemoprotective properties, and most notably, oxidoreductase functions. In recent years, numerous studies have reported that low Se levels are associated with increased risk, poor outcome, and mortality of metabolic disorders, mainly related to the limited antioxidant defense resulting from Se deficiency.
View Article and Find Full Text PDFDiabetic kidney disease (DKD) accounts for a large proportion of end-stage renal diseases that require renal replacement therapies including dialysis and transplantation. Therefore, it is critical to understand the occurrence and development of DKD. Podocytes are mainly injured during the development of DKD, ultimately leading to their extensive death and loss.
View Article and Find Full Text PDFBiomed Pharmacother
December 2021
Background: In the present study, we aimed to investigate the effects of probucol on aging-related hippocampus-dependent cognitive impairment and explore the potential mechanisms.
Methods: D-galactose (100 mg/kg, once daily for 6 weeks) was subcutaneously injected to induce aging in mice. Then the mice were administered with probucol or vehicle once a day for 2 weeks.
The proliferation and migration of vascular smooth muscle cells (VSMCs) are essential events in venous neointimal hyperplasia (VNH), a culprit of arteriovenous fistula (AVF) malfunction. Mitotic arrest-deficient protein 2B (MAD2B) is a critical regulator of cell proliferation and differentiation in many scenarios. To address the role of MAD2B in VSMCs proliferation and migration during VNH, AVFs from patients with end-stage renal disease (ESRD) and chronic kidney disease (CKD) mice were used to evaluate MAD2B expression.
View Article and Find Full Text PDFBackground: Chemokines are a family of proteins mainly mediating the homing and migration of various cells. The CXC chemokine CXCL12 is a member of low-weight-molecular chemokines. In the kidney, CXCL12 is pivotal for renal development and exerts a modulatory effect in kidney diseases under different etiologic settings by binding with CXC chemokine receptor 4 (CXCR4) or CXC chemokine receptor 7 (CXCR7).
View Article and Find Full Text PDFAcute kidney injury (AKI) is a serious clinical emergency with an acute onset, rapid progression, and poor prognosis. Recent evidence suggests that AKI is accompanied by significant metabolic abnormalities, including alterations in lipid metabolism. However, the specific changes in lipids in AKI, and their role and regulation mechanisms are currently unclear.
View Article and Find Full Text PDFMetformin is an oral antihyperglycemic drug widely used to treat type 2 diabetes mellitus (T2DM), acting via indirect activation of 5' Adenosine monophosphate-activated Protein Kinase (AMPK). Beyond the anti-diabetic effect, accumulative pieces of evidence have revealed that metformin also everts a beneficial effect in diverse kidney diseases. In various acute kidney diseases (AKI) animal models, metformin protects renal tubular cells from inflammation, apoptosis, reactive oxygen stress (ROS), endoplasmic reticulum (ER) stress, epithelial-mesenchymal transition (EMT) via AMPK activation.
View Article and Find Full Text PDFOxidative stress results from the disruption of the redox system marked by a notable overproduction of reactive oxygen species. There are four major sources of reactive oxygen species, including NADPH oxidases, mitochondria, nitric oxide synthases, and xanthine oxidases. It is well known that renal abnormalities trigger the production of reactive oxygen species by diverse mechanisms under various pathologic stimuli, such as acute kidney injury, chronic kidney disease, nephrotic syndrome, and metabolic disturbances.
View Article and Find Full Text PDF