Publications by authors named "Annette M Dirac"

Approximately 70% of breast cancers express estrogen receptor α (ERα) and depend on this key transcriptional regulator for proliferation and differentiation. While patients with this disease can be treated with targeted antiendocrine agents, drug resistance remains a significant issue, with almost half of patients ultimately relapsing. Elucidating the mechanisms that control ERα function may further our understanding of breast carcinogenesis and reveal new therapeutic opportunities.

View Article and Find Full Text PDF

The nuclear factor κB (NF-κB) signalling pathway controls important cellular events such as cell proliferation, differentiation, apoptosis and immune responses. Pathway activation occurs rapidly upon TNFα stimulation and is highly dependent on ubiquitination events. Using cytoplasmic to nuclear translocation of the NF-κB transcription factor family member p65 as a read-out, we screened a synthetic siRNA library targeting enzymes involved in ubiquitin conjugation and de-conjugation for modifiers of regulatory ubiquitination events in NF-κB signalling.

View Article and Find Full Text PDF

The ubiquitin-specific protease USP7/HAUSP regulates p53 and MDM2 levels, and cellular localization of FOXO4 and PTEN, and hence is critically important for their role in cellular processes. Here we show how the 64 kDa C-terminal region of USP7 can positively regulate deubiquitinating activity. We present the crystal structure of this USP7/HAUSP ubiquitin-like domain (HUBL) comprised of five ubiquitin-like (Ubl) domains organized in 2-1-2 Ubl units.

View Article and Find Full Text PDF

Activation of the mammalian Notch receptor after ligand binding relies on a succession of events including metalloprotease-cleavage, endocytosis, monoubiquitination, and eventually processing by the gamma-secretase, giving rise to a soluble, transcriptionally active molecule. The Notch1 receptor was proposed to be monoubiquitinated before its gamma-secretase cleavage; the targeted lysine has been localized to its submembrane domain. Investigating how this step might be regulated by a deubiquitinase (DUB) activity will provide new insight for understanding Notch receptor activation and downstream signaling.

View Article and Find Full Text PDF

The androgen receptor (AR) is a member of the nuclear receptor superfamily and is essential for male sexual development and maturation, as well as prostate cancer development. Regulation of AR signaling activity depends on several posttranslational modifications, one of these being ubiquitination. We screened a short hairpin library targeting members of the deubiquitination enzyme family and identified the X-linked deubiquitination enzyme USP26 as a novel regulator of AR signaling.

View Article and Find Full Text PDF

A wide range of pathogens, including human immunodeficiency virus type 1 (HIV-1), hepatitis C virus, Ebola virus, cytomegalovirus, dengue virus, Mycobacterium, Leishmania, and Helicobacter pylori, can interact with dendritic cell (DC)-specific ICAM3-grabbing nonintegrin (DC-SIGN), expressed on DCs and a subset of B cells. More specifically, the interaction of the gp120 envelope protein of HIV-1 with DC-SIGN can facilitate the transfer of virus to CD4+ T lymphocytes in trans and enhance infection. We have previously demonstrated that a multimeric LeX component in human milk binds to DC-SIGN, preventing HIV-1 from interacting with this receptor.

View Article and Find Full Text PDF

Posttranslational modification of proteins by the small molecule ubiquitin is a key regulatory event, and the enzymes catalyzing these modifications have been the focus of many studies. Deubiquitinating enzymes, which mediate the removal and processing of ubiquitin, may be functionally as important but are less well understood. Here, we present an inventory of the deubiquitinating enzymes encoded in the human genome.

View Article and Find Full Text PDF

Protein ubiquitination is a dynamic process, depending on a tightly regulated balance between the activity of ubiquitin ligases and their antagonists, the ubiquitin-specific proteases or deubiquitinating enzymes. The family of ubiquitin ligases has been studied intensively and it is well established that their deregulation contributes to diverse disease processes, including cancer. Much less is known about the function and regulation of the large group of deubiquitinating enzymes.

View Article and Find Full Text PDF

Protein ubiquitination and deubiquitination are dynamic processes implicated in the regulation of numerous cellular pathways. Monoubiquitination of the Fanconi anemia (FA) protein FANCD2 appears to be critical in the repair of DNA damage because many of the proteins that are mutated in FA are required for FANCD2 ubiquitination. By screening a gene family RNAi library, we identify the deubiquitinating enzyme USP1 as a novel component of the Fanconi anemia pathway.

View Article and Find Full Text PDF

Protein modification by the conjugation of ubiquitin moieties--ubiquitination--plays a major part in many biological processes, including cell cycle and apoptosis. The enzymes that mediate ubiquitin-conjugation have been well-studied, but much less is known about the ubiquitin-specific proteases that mediate de-ubiquitination of cellular substrates. To study this gene family, we designed a collection of RNA interference vectors to suppress 50 human de-ubiquitinating enzymes, and used these vectors to identify de-ubiquitinating enzymes in cancer-relevant pathways.

View Article and Find Full Text PDF

Senescence is generally defined as an irreversible state of G(1) cell cycle arrest in which cells are refractory to growth factor stimulation. In mouse embryo fibroblasts (MEFs), induction of senescence requires the presence of p19(ARF) and p53, as genetic ablation of either of these genes allows escape from senescence and leads to immortalization. We have developed a lentiviral vector that directs the synthesis of a p53-specific short hairpin transcript, which mediates stable suppression of p53 expression through RNA interference.

View Article and Find Full Text PDF

The dimer initiation site (DIS) hairpin of the HIV-2 untranslated leader RNA mediates in vitro dimerization through 'loop-loop kissing' of a loop-exposed palindrome sequence. Premature RNA dimerization must be prevented during the retroviral life cycle. A regulatory mechanism has been proposed for the HIV-1 leader RNA that can adopt an alternative conformation in which the DIS motif is effectively masked by long-distance base pairing with upstream leader sequences.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: