Publications by authors named "Annette Kirsch"

This study proposes a novel non-linear modelling approach to predict the dissolution profiles of extended-release tablets, by combining a full-factorial design, curve fitting to the dissolution profiles, and artificial neural networks (ANN), with linear regression methods, partial least squares (PLS) and multiple linear regression (MLR) as benchmarks. Hydroxypropylmethylcellulose (HPMC) and carboxymethylcellulose (CMC) grades, active pharmaceutical ingredient (API) lubrication, and compression force were chosen as DoE factors. The resulting batches were tested to obtain their corresponding dissolution profile, and a first-order dissolution equation was fitted to each profile.

View Article and Find Full Text PDF

Since late 2019, concerns regarding trace levels of the probable human carcinogen N-dimethylnitrosamine (NDMA) in Metformin-containing pharmaceuticals have been an issue if they exceeded the maximum allowable intake of 96 ng/day for a medicine with long-term intake. Here, we report results from an extensive analysis of NDMA content along the active pharmaceutical ingredient (API) manufacturing process as well as two different drug product manufacturing processes. Our findings confirm that Metformin API is not a significant source of NDMA found in Metformin pharmaceuticals and that NDMA is created at those steps of the drug product manufacturing that introduce heat and nitrite.

View Article and Find Full Text PDF

Background: For nearly three years, the concerns regarding trace levels of N-nitrosamines in pharmaceuticals and the associated cancer risk have significantly expanded and are a major issue facing the global pharmaceutical industry. N-nitrosodimethylamine (NDMA) found in formulations of the popular anti-diabetic drug metformin is a prominent example. This has resulted in product recalls raising the profile within the media.

View Article and Find Full Text PDF