The nuclear receptors hepatocyte nuclear factor 4α (HNF4α) and retinoic acid receptor-related orphan receptor-β (RORβ) are ligand-regulated transcription factors and potential drug targets for metabolic disorders. However, there is a lack of small molecular, selective ligands to explore the therapeutic potential in further detail. Here, we report the discovery of greater celandine (Chelidonium majus) isoquinoline alkaloids as nuclear receptor modulators: Berberine is a selective RORβ inverse agonist and modulated target genes involved in the circadian clock, photoreceptor cell development, and neuronal function.
View Article and Find Full Text PDFRibosome-driven protein biosynthesis is comprised of four phases: initiation, elongation, termination and recycling. In bacteria, ribosome recycling requires ribosome recycling factor and elongation factor G, and several structures of bacterial recycling complexes have been determined. In the eukaryotic and archaeal kingdoms, however, recycling involves the ABC-type ATPase ABCE1 and little is known about its structural basis.
View Article and Find Full Text PDFProtein conformation is critically linked to function and often controlled by interactions with regulatory factors. Here we report the selection of camelid-derived single-domain antibodies (nanobodies) that modulate the conformation and spectral properties of the green fluorescent protein (GFP). One nanobody could reversibly reduce GFP fluorescence by a factor of 5, whereas its displacement by a second nanobody caused an increase by a factor of 10.
View Article and Find Full Text PDFThe ATP binding cassette enzyme ABCE1 (also known as RNase-L (ribonuclease L) inhibitor, Pixie, and HP68), one of the evolutionary most sequence-conserved enzymes, functions in translation initiation, ribosome biogenesis, and human immunodeficiency virus capsid assembly. However, its structural mechanism and biochemical role in these processes have not been revealed. We determined the crystal structure of Pyrococcus abyssi ABCE1 in complex with Mg(2+) and ADP to 2.
View Article and Find Full Text PDFThe ABC ATPase RNase-L inhibitor (RLI) emerges as a key enzyme in ribosome biogenesis, formation of translation preinitiation complexes, and assembly of HIV capsids. To help reveal the structural mechanism of RLI, we determined the Mg2+-ADP bound crystal structure of the twin cassette ATPase of P. furiosus RLI at 1.
View Article and Find Full Text PDFThe Mre11, Rad50 and Nbs1 proteins make up the conserved multi-functional Mre11 (MRN) complex involved in multiple, critical DNA metabolic processes including double-strand break repair and telomere maintenance. The Mre11 protein is a nuclease with broad substrate recognition, but MRN-dependent processes requiring the nuclease activity are not clearly defined. Here, we report the functional and structural characterization of a nuclease-deficient Mre11 protein termed mre11-3.
View Article and Find Full Text PDFThe repair of double-strand breaks in DNA is an essential process in all organisms, and requires the coordinated activities of evolutionarily conserved protein assemblies. One of the most critical of these is the Mre11/Rad50 (M/R) complex, which is present in all three biological kingdoms, but is not well-understood at the biochemical level. Previous structural analysis of a Rad50 homolog from archaebacteria illuminated the catalytic core of the enzyme, an ATP-binding domain related to the ABC transporter family of ATPases.
View Article and Find Full Text PDFThe Mre11 complex (Mre11 Rad50 Nbs1) is central to chromosomal maintenance and functions in homologous recombination, telomere maintenance and sister chromatid association. These functions all imply that the linked binding of two DNA substrates occurs, although the molecular basis for this process remains unknown. Here we present a 2.
View Article and Find Full Text PDF