Background: The amygdala, hippocampus and hypothalamus are critical stress regulatory areas that undergo functional maturation for stress responding initially established during gestational and early postnatal brain development. Fetal alcohol spectrum disorder (FASD), a consequence of prenatal alcohol exposure (PAE), results in cognitive, mood and behavioral disorders. Prenatal alcohol exposure negatively impacts components of the brain stress response system, including stress-associated brain neuropeptides and glucocorticoid receptors in the amygdala, hippocampus and hypothalamus.
View Article and Find Full Text PDFAlcohol consumption during pregnancy is associated with Fetal Alcohol Spectrum Disorders (FASD) that results in a continuum of central nervous system (CNS) deficits. Emerging evidence from both preclinical and clinical studies indicate that the biological vulnerability to chronic CNS disease in FASD populations is driven by aberrant neuroimmune actions. Our prior studies suggest that, following minor nerve injury, prenatal alcohol exposure (PAE) is a risk factor for developing adult-onset chronic pathological touch sensitivity or allodynia.
View Article and Find Full Text PDFPurpose: Opioids and alcohol impact critical serotonin (5-HT) function in the developing placenta and fetus through the actions of immune proinflammatory factors. Yet, possible convergent effects of opioids and alcohol on human placental toll-like receptor 4 (TLR4) activation and subsequent 5-HT homeostasis remain entirely unknown. The purpose of this study was to examine the effect of prenatal exposure to opioids with or without prenatal alcohol exposure (PAE) on the expression of key placental immune and serotonin signaling factors in human placental tissue obtained from a well-characterized prospective cohort.
View Article and Find Full Text PDF