Publications by authors named "Annette Hambrock"

Apoptosis of pancreatic beta-cells is an important factor in the pathophysiology of diabetes. Previously, we have shown that the "phytoestrogen" resveratrol can induce beta-cell apoptosis dependent on the expression of sulfonylurea receptor (SUR) 1, the regulatory subunit of pancreatic ATP-sensitive K(+) channels. Here, we investigate whether 17beta-estradiol also influences beta-cell apoptosis in a SUR1-dependent manner.

View Article and Find Full Text PDF

Sulfonylurea receptors (SURs) constitute the regulatory subunits of ATP-sensitive K+ channels (K(ATP) channels). SUR binds nucleotides and synthetic K(ATP) channel modulators, e.g.

View Article and Find Full Text PDF

Sulfonylurea receptor 1 (SUR1) is the regulatory subunit of the pancreatic ATP-sensitive K+ channel (K(ATP) channel), which is essential for triggering insulin secretion via membrane depolarization. Sulfonylureas, such as glibenclamide and tolbutamide, act as K(ATP) channel blockers and are widely used in diabetes treatment. These antidiabetic substances are known to induce apoptosis in pancreatic beta-cells or beta-cell lines under certain conditions.

View Article and Find Full Text PDF

1. ATP-sensitive K(+) channels (K(ATP) channels) are tetradimeric complexes of inwardly rectifying K(+) channels (Kir6.x) and sulphonylurea receptors (SURs).

View Article and Find Full Text PDF

The sulfonylurea receptor (SUR) is the important regulatory subunit of ATP-sensitive K+ channels. It is an ATP-binding cassette protein comprising 17 transmembrane helices. SUR is endowed with binding sites for channel blockers like the antidiabetic sulfonylurea glibenclamide and for the chemically very heterogeneous channel openers.

View Article and Find Full Text PDF

1. ATP-sensitive K(+) channels (K(ATP) channels) are composed of pore-forming subunits (Kir6.x) and of regulatory subunits, the sulphonylurea receptors (SURx).

View Article and Find Full Text PDF

1 Openers of ATP-sensitive K(+) channels (K(ATP) channels) are thought to act by enhancing the ATPase activity of sulphonylurea receptors (SURs), the regulatory channel subunits. At higher concentrations, some openers activate K(ATP) channels also in the absence of MgATP. Here, we describe binding and effect of structurally diverse openers in the absence of Mg(2+) and presence of EDTA.

View Article and Find Full Text PDF

Objectives: I(Ks), the slow component of the delayed rectifier potassium current, underlies a strong beta-adrenergic regulation in the heart. Catecholamines, like isoproterenol, induce a strong increase in I(Ks). Recent work has pointed to an opposing biological effect of beta(1)- and beta(3)-adrenoceptors in the heart.

View Article and Find Full Text PDF

1. ATP-sensitive potassium channels (K(ATP) channels) consist of pore-forming Kir6.x subunits and of sulphonylurea receptors (SURs).

View Article and Find Full Text PDF

ATP-dependent K(+) channels (K(ATP) channels) are composed of pore-forming subunits Kir6.x and sulfonylurea receptors (SURs). Cyanoguanidines such as pinacidil and P1075 bind to SUR and enhance MgATP binding to and hydrolysis by SUR, thereby opening K(ATP) channels.

View Article and Find Full Text PDF

1: ATP-sensitive K(+) channels are composed of pore-forming subunits Kir6.2 and of sulphonylurea receptors (SURs); the latter are the target of the hypoglycaemic sulphonylureas like glibenclamide. Here, we report on the negative allosteric modulation by MgATP and MgADP of glibenclamide binding to SUR1 and to SUR2 mutants with high glibenclamide affinity, SUR2A(Y1206S) and SUR2B(Y1206S).

View Article and Find Full Text PDF

ATP-sensitive K(+) (K(ATP)) channels are composed of pore-forming Kir6.x subunits and regulatory sulfonylurea receptor (SUR) subunits. SURs are ATP-binding cassette proteins with two nucleotide-binding folds (NBFs) and binding sites for sulfonylureas, like glibenclamide, and for channel openers.

View Article and Find Full Text PDF

Sulfonylurea receptors (SURs) are subunits of ATP-sensitive K(+) channels (K(ATP) channels); they mediate the channel-closing effect of sulfonylureas such as glibenclamide and the channel-activating effect of K(ATP) channel openers such as the pinacidil analog P1075. We investigated the inhibition by MgATP and P1075 of glibenclamide binding to SUR2B, the SUR subtype in smooth muscle. To increase specific binding, experiments were also performed using SUR2B(Y1206S), a mutant with higher affinity for glibenclamide than for the wild-type (K(D )= 4 versus 22 nM, respectively) but otherwise exhibiting similar pharmacological properties.

View Article and Find Full Text PDF