Publications by authors named "Annette Bollmann"

Unlabelled: Aerobic ammonia oxidizers (AOs) are prokaryotic microorganisms that contribute to the global nitrogen cycle by performing the first step of nitrification, the oxidation of ammonium to nitrite and nitrate. While aerobic AOs are found ubiquitously, their distribution is controlled by key environmental conditions such as substrate (ammonium) availability. Ammonia-oxidizing archaea (AOA) and complete ammonia oxidizers (comammox) are generally found in oligotrophic environments with low ammonium availability.

View Article and Find Full Text PDF

Two metagenome-assembled genomes (MAGs) were recovered from the ammonia-oxidizing enrichment culture BO1 obtained from the sediment of the freshwater reservoir Lake Burr Oak, Ohio, USA. High quality MAGs were assembled for the archaeal ammonia oxidizer sp. BO1 and the canonical nitrite oxidizer sp.

View Article and Find Full Text PDF

Complete ammonia oxidizers (comammox) are a group of ubiquitous chemolithoautotrophic bacteria capable of deriving energy from the oxidation of ammonia to nitrate via nitrite. Here, we present a study characterizing the comammox strain sp. BO4 using a combination of cultivation-dependent and molecular methods.

View Article and Find Full Text PDF

In the environment, nutrients are rarely available in a constant supply. Therefore, microorganisms require strategies to compete for limiting nutrients. In freshwater systems, ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) compete with heterotrophic bacteria, photosynthetic microorganisms, and each other for ammonium, which AOA and AOB utilize as their sole source of energy and nitrogen.

View Article and Find Full Text PDF

Chromium(iii) complexes of chelating diphosphines, with PNP or PCNCP backbones, are excellent catalysts for ethylene tetra- and/or trimerisations. A missing link within this ligand series are unsymmetric chelating diphosphines based on a PCNP scaffold. New bidentate PCNP ligands of the type PhPCHN(R)PPh (R = 1-naphthyl or 5-quinoline groups, 2a-d) have been synthesised and shown to be extremely effective ligands for ethylene tri-/tetramerisations.

View Article and Find Full Text PDF

Ammonia-oxidizing archaea (AOA) are among the most abundant and ubiquitous microorganisms in the ocean, exerting primary control on nitrification and nitrogen oxides emission. Although united by a common physiology of chemoautotrophic growth on ammonia, a corresponding high genomic and habitat variability suggests tremendous adaptive capacity. Here, we compared 44 diverse AOA genomes, 37 from species cultivated from samples collected across diverse geographic locations and seven assembled from metagenomic sequences from the mesopelagic to hadopelagic zones of the deep ocean.

View Article and Find Full Text PDF

Ammonia-oxidizing bacteria (AOB) within the genus Nitrosomonas perform the first step in nitrification, ammonia oxidation, and are found in diverse aquatic and terrestrial environments. Nitrosomonas AOB were grouped into six defined clusters, which correlate with physiological characteristics that contribute to adaptations to a variety of abiotic environmental factors. A fundamental physiological trait differentiating Nitrosomonas AOB is the adaptation to either low (cluster 6a) or high (cluster 7) ammonium concentrations.

View Article and Find Full Text PDF

sp. strains OR43 and OR53 belong to the phylum and were isolated from subsurface sediments in Oak Ridge, TN. Both strains grow at elevated levels of heavy metals.

View Article and Find Full Text PDF

Anaerobic ammonia-oxidizing (Anammox) bacteria (AnAOB) rely on nitrite supplied by ammonia-oxidizing bacteria (AOB) and archaea (AOA). Affinities for ammonia and oxygen play a crucial role in AOA/AOB competition and their association with AnAOB. In this work we measured the affinity constants for ammonia and oxygen (half-saturation; k) of two freshwater AOA enrichments, an AOA soil isolate (N.

View Article and Find Full Text PDF

ATCC 49181 is a cold-tolerant marine ammonia-oxidizing bacterium isolated from seawater collected in the Gulf of Alaska. The high-quality complete genome contains a 2.87-Mbp chromosome and a 56.

View Article and Find Full Text PDF

Nitrosospira briensis C-128 is an ammonia-oxidizing bacterium isolated from an acid agricultural soil. N. briensis C-128 was sequenced with PacBio RS technologies at the DOE-Joint Genome Institute through their Community Science Program (2010).

View Article and Find Full Text PDF
Article Synopsis
  • Microorganisms in the environment thrive in complex communities rather than as isolated pure cultures, making it vital to study their interactions to understand their functions better.
  • This study focused on how a nitrite-oxidizing bacterium (NOB) and heterotrophic bacteria impact the growth and protein expression (proteome) of a specific ammonia-oxidizing bacterium, Nitrosomonas sp. strain Is79, in different co-cultures.
  • Findings showed that interactions with N. winogradskyi and heterotrophic bacteria increased the growth and altered the proteome of Nitrosomonas sp. Is79, reducing oxidative stress and enhancing its metabolic efficiency, contributing to its important role in the nitrogen cycle.
View Article and Find Full Text PDF

In the environment, microorganisms are living in diverse communities, which are impacted by the prevailing environmental conditions. Here, we present a study investigating the effect of low pH and elevated uranium concentration on the dynamics of an artificial microbial consortium. The members (Caulobacter sp.

View Article and Find Full Text PDF

In their natural habitats, microorganisms are often exposed to periods of starvation if their substrates for energy generation or other nutrients are limiting. Many microorganisms have developed strategies to adapt to fluctuating nutrients and long-term starvation. In the environment, ammonia oxidizers have to compete with many different organisms for ammonium and are often exposed to long periods of ammonium starvation.

View Article and Find Full Text PDF

Ammonia oxidation is the first step of nitrification carried out by ammonia-oxidizing Archaea (AOA) and Bacteria (AOB). Lake Superior and Erie are part of the Great Lakes system differing in trophic status with Lake Superior being oligotrophic and Lake Erie meso- to eutrophic. Sediment samples were collected from both lakes and used to characterize abundance and diversity of AOA and AOB based on the ammonia monooxygenase (amoA) gene.

View Article and Find Full Text PDF

Nitrosomonas sp. Is79 is a chemolithoautotrophic ammonia-oxidizing bacterium that belongs to the family Nitrosomonadaceae within the phylum Proteobacteria. Ammonia oxidation is the first step of nitrification, an important process in the global nitrogen cycle ultimately resulting in the production of nitrate.

View Article and Find Full Text PDF

Caulobacter sp. strain OR37 belongs to the class Alphaproteobacteria and was isolated from subsurface sediments in Oak Ridge, TN. Strain OR37 is noteworthy due to its tolerance to high concentrations of heavy metals, such as uranium, nickel, cobalt, and cadmium, and we present its draft genome sequence here.

View Article and Find Full Text PDF

Ralstonia sp. strain OR214 belongs to the class Betaproteobacteria and was isolated from subsurface sediments in Oak Ridge, TN. A member of this genus has been described as a potential bioremediation agent.

View Article and Find Full Text PDF

High molecular weight polyphenols (e.g. tannins) that enter the soil may affect microbial populations, by serving as substrates for microbial respiration or by selecting for certain microbes.

View Article and Find Full Text PDF

Aerobic biological ammonia oxidation is carried out by two groups of microorganisms, ammonia-oxidizing bacteria (AOB) and the recently discovered ammonia-oxidizing archaea (AOA). Here we present a study using cultivation-based methods to investigate the differences in growth of three AOA cultures and one AOB culture enriched from freshwater environments. The strain in the enriched AOA culture belong to thaumarchaeal group I.

View Article and Find Full Text PDF

Nitrosomonas sp. strain AL212 is an obligate chemolithotrophic ammonia-oxidizing bacterium (AOB) that was originally isolated in 1997 by Yuichi Suwa and colleagues. This organism belongs to Nitrosomonas cluster 6A, which is characterized by sensitivity to high ammonia concentrations, higher substrate affinity (lower K(m)), and lower maximum growth rates than strains in Nitrosomonas cluster 7, which includes Nitrosomonas europaea and Nitrosomonas eutropha.

View Article and Find Full Text PDF

Ammonia-oxidizing microorganisms (AOM) generate their energy by the oxidation of ammonia (NH(3)) to nitrite (NO(2)(-)). This process can be carried out by ammonia-oxidizing bacteria (AOB) as well as by the recently discovered ammonia-oxidizing archaea (AOA). In the past, AOB were enriched in batch cultures, often in the presence of rather high concentrations of NH(4)(+).

View Article and Find Full Text PDF

The majority of environmental microorganisms cannot be grown by traditional techniques. Here we employed, and contrasted with conventional plating, an alternative approach based on cultivation of microorganisms inside diffusion chambers incubated within natural samples, followed by subculturing in petri dishes. Using this approach, we isolated microorganisms from subsurface sediments from the Field Research Center (FRC) in Oak Ridge, TN.

View Article and Find Full Text PDF

The approach of growing microorganisms in situ, or in a simulated natural environment is appealing, and different versions of it have been described by several groups. The major difficulties with these approaches are that they are not selective for actinomycetes - a group of gram-positive bacteria well known as a rich source of antibiotics. In order to efficiently access actinomycetes, a trap for specifically capturing and cultivating these microorganisms in situ has been developed, based on the ability of these bacteria to form hyphae and penetrate solid environments.

View Article and Find Full Text PDF

The majority of microorganisms from natural environments cannot be grown in the laboratory. The diffusion-chamber-based approach is an alternative method that allows microorganisms to grow in their natural environment. An inoculum is sandwiched between semipermeable (0.

View Article and Find Full Text PDF