Publications by authors named "Annemiete W C M Van Der Kemp"

Background: Cisplatin is an effective anti-neoplastic drug, but its clinical use is limited due to dose-dependent nephrotoxicity. The majority of cisplatin-treated patients develop hypomagnesaemia, often associated with a reduced glomerular filtration rate (GFR), polyuria and other electrolyte disturbances. The aim of this study is to unravel the molecular mechanism responsible for these particular electrolyte disturbances.

View Article and Find Full Text PDF

Background: Klotho(-/-) mice display disturbed Ca(2+) and vitamin D homeostasis. Renal cytochrome p450 27b1 (Cyp27b1), the enzyme that catalyzes the hydrolysis to 1,25-dihydroxyvitamin D(3) (1,25(OH)(2)D(3)), is increased in klotho(-/-) mice, and a 1,25(OH)(2)D(3)-deficient diet partially normalized Ca(2+) homeostasis in these klotho(-/-) mice. The aim of the present study was to further delineate the interplay between 1,25(OH)(2)D(3) and klotho and their relative contribution to the Ca(2+) homeostasis of klotho(-/-) mice.

View Article and Find Full Text PDF

The transient receptor potential vanilloid channels 5 and 6 (TRPV5/6) are the most Ca(2+)-selective channels within the TRP superfamily of ion channels. These epithelial Ca(2+) channels are regulated at different intra- and extracellular sites by the feedback response of Ca(2+) itself, calciotropic hormones, and by TRPV5/6-associated proteins. In the present study, bioinformatics was used to search for novel TRPV5/6-associated genes.

View Article and Find Full Text PDF

Aging is associated with alterations in Ca2+ homeostasis, which predisposes elder people to hyperparathyroidism and osteoporosis. Intestinal Ca2+ absorption decreases with aging and, in particular, active transport of Ca2+ by the duodenum. In addition, there are age-related changes in renal Ca2+ handling.

View Article and Find Full Text PDF

The epithelial Ca(2+) channels TRPV5 and TRPV6 constitute the apical Ca(2+) influx pathway in epithelial Ca(2+) transport. PDZ proteins have been demonstrated to play a crucial role in the targeting or anchoring of ion channels and transporters in the apical domain of the cell. In this study, we describe the identification of NHERF4 (Na-P(i) Cap2/IKEPP/PDZK2) as a novel TRPV5- and TRPV6-associated PDZ protein.

View Article and Find Full Text PDF

Transient receptor potential vallinoid 5 (TRPV5) and TRPV6 are the most Ca2+-selective members of the TRP superfamily and are essential for active Ca2+ (re)absorption in epithelia. However, little is known about intracellular proteins that regulate the activity of these channels. This study identified BSPRY (B-box and SPRY-domain containing protein) as a novel factor involved in the control of TRPV5.

View Article and Find Full Text PDF

Background: The kidney is one of the affected organs involved in the clinical symptoms of parathyroid hormone (PTH)-related disorders, like primary hyperparathyroidism and familial hypocalciuric hypercalcemia. The molecular mechanism(s) underlying alterations in renal Ca(2+) handling in these disorders is poorly understood.

Methods: Parathyroidectomized and PTH-supplemented rats and mice infused with the calcimimetic compound NPS R-467 were used to study the in vivo effect of PTH on the expression of renal transcellular Ca(2+) transport proteins, including the epithelial Ca(2+) channel transient receptor potential, vanilloid, member 5 (TRPV5), calbindins, and the Na(+)/Ca(2+)-exchanger (NCX1).

View Article and Find Full Text PDF

Vitamin D plays an important role in Ca(2+) homeostasis by controlling Ca(2+) (re)absorption in intestine, kidney, and bone. The epithelial Ca(2+) channel TRPV5 mediates the Ca(2+) entry step in active Ca(2+) reabsorption. TRPV5 knockout (TRPV5(-/-)) mice show impaired Ca(2+) reabsorption, hypercalciuria, hypervitaminosis D, and intestinal hyperabsorption of Ca(2+).

View Article and Find Full Text PDF

Thiazide diuretics enhance renal Na+ excretion by blocking the Na+-Cl- cotransporter (NCC), and mutations in NCC result in Gitelman syndrome. The mechanisms underlying the accompanying hypocalciuria and hypomagnesemia remain debated. Here, we show that enhanced passive Ca2+ transport in the proximal tubule rather than active Ca2+ transport in distal convolution explains thiazide-induced hypocalciuria.

View Article and Find Full Text PDF

Background: Vitamin D compounds are used clinically to control secondary hyperparathyroidism (SHPT) due to renal failure. Newer vitamin D compounds retain the suppressive action of 1,25(OH)(2)D(3) on the parathyroid glands and may have less Ca(2+)-mobilizing activity, offering potentially safer therapies.

Methods: This study investigated the effect of a single dose of compound (1,25(OH)(2)D(3), 1,24(OH)(2)D(2), or 1alpha(OH)D(2)) on renal and intestinal Ca(2+) transport proteins, including TRPV5 and TRPV6, and serum Ca(2+), in a novel SHPT model, the 25-OH-D(3)-1alpha-hydroxylase knockout mouse, which lacks endogenous 1,25(OH)(2)D(3) and is severely hypocalcemic.

View Article and Find Full Text PDF

Ca2+ ions play a fundamental role in many cellular processes, and the extracellular concentration of Ca2+ is kept under strict control to allow the proper physiological functions to take place. The kidney, small intestine, and bone determine the Ca2+ flux to the extracellular Ca2+ pool in a concerted fashion. Transient receptor potential (TRP) cation channel subfamily V, members 5 and 6 (TRPV5 and TRPV6) have recently been postulated to be the molecular gatekeepers facilitating Ca2+ influx in these tissues and are members of the TRP family, which mediates diverse biological effects ranging from pain perception to male aggression.

View Article and Find Full Text PDF

Mg2+ is an essential ion involved in a multitude of physiological and biochemical processes and a major constituent of bone tissue. Mg2+ homeostasis in mammals depends on the equilibrium between intestinal Mg2+ absorption and renal Mg2+ excretion, but little is known about the molecular nature of the proteins involved in the transepithelial transport of Mg2+ in these organs. Recently, it was shown that patients with mutations in TRPM6, a member of the transient receptor potential family of cation channels, suffer from hypomagnesemia with secondary hypocalcemia (HSH) as a result of impaired renal and/or intestinal Mg2+ handling.

View Article and Find Full Text PDF

The family of epithelial Ca(2+) channels consists of two highly homologues members, TRPV5 and TRPV6, which constitute the apical Ca(2+) entry mechanism in active Ca(2+) (re)absorption in kidney and small intestine. In kidney, TRPV5 expression has been extensively studied, whereas TRPV6 localization and regulation has been largely confined to the small intestine. The present study investigated the renal distribution of TRPV6 and regulation by 1,25-dihydroxyvitamin D(3) (1,25(OH)(2)D(3)).

View Article and Find Full Text PDF

Introduction: Thiazide diuretics have the unique characteristic of increasing renal Na+ excretion, while decreasing Ca2+ excretion. However, the molecular mechanism responsible for this thiazide-induced hypocalciuria remains unclear. The present study investigates the effect of thiazides on the expression of the proteins involved in active Ca2+ transport as well as the role of extracellular volume (ECV) status.

View Article and Find Full Text PDF

The epithelial Ca2+ channels TRPV5 and TRPV6 are localized to the brush border membrane of intestinal cells and constitute the postulated rate-limiting entry step of active Ca2+ absorption. The aim of the present study was to investigate the hormonal regulation of these channels. To this end, the effect of 17beta-estradiol (17beta-E2), 1,25-dihydroxyvitamin D3 [1,25(OH)2D3], and dietary Ca2+ on the expression of the duodenal Ca2+ transport proteins was investigated in vivo and analyzed using realtime quantitative PCR.

View Article and Find Full Text PDF

Pseudovitamin D-deficiency rickets (PDDR) is an autosomal disease characterized by hyperparathyroidism, rickets, and undetectable levels of 1,25-dihydroxyvitaminD3 (1,25(OH)2D3). Mice in which the 25-hydroxyvitamin D3-1alpha-hydroxylase (1alpha-OHase) gene was inactivated presented the same clinical phenotype as patients with PDDR and were used to study renal expression of the epithelial Ca2+ channel (ECaC1), the calbindins, Na+/Ca2+ exchanger (NCX1), and Ca2+-ATPase (PMCA1b). Serum Ca2+ (1.

View Article and Find Full Text PDF

Bartter syndrome is an autosomal recessive heterogeneous renal tubular disorder affecting NaCl reabsorption in the thick ascending limb of Henle's loop (TAL). The aim of this study was to elucidate the functional implications of mutations in the predominant human ROMK isoform in TAL, hROMK2, involved in Bartter syndrome type II. cRNA of flag-tagged hROMK2 and eight mutants identified in seven non-related patients was expressed in Xenopus laevis oocytes.

View Article and Find Full Text PDF

The recently cloned epithelial Ca2+ channel (ECaC), which is expressed primarily in 1,25-dihydroxyvitamin D(3) (1,25(OH)(2)D(3))-responsive Ca2+ -transporting epithelia, is postulated to constitute the rate-limiting step in active Ca2+ reabsorption. In the present study, the effect of 1,25(OH)(2)D(3) was investigated on ECaC mRNA and protein levels in kidneys of rats that were raised on a vitamin D-depleting diet. This diet decreased the serum 1,25(OH)(2)D(3) concentration significantly, which was accompanied by a marked drop in serum Ca2+ level.

View Article and Find Full Text PDF