In childhood immune thrombocytopenia (ITP), anti-platelet autoantibodies mediate platelet clearance through Fc-γ receptor (FcγR)-bearing phagocytes. In 75% to 90% of patients, the disease has a transient, self-limiting character. Here we characterized how polymorphisms of FcγR genes affect disease susceptibility, response to intravenous immunoglobulin (IVIg) treatment, and long-term recovery from childhood ITP.
View Article and Find Full Text PDFManagement of children with newly diagnosed immune thrombocytopenia (ITP) consists of careful observation or immunomodulatory treatment. Observational studies suggest a lower risk for chronic ITP in children after intravenous immunoglobulin (IVIg) treatment. In this multicenter randomized trial, children aged 3 months to 16 years with newly diagnosed ITP, platelet counts 20 × 10/L or less, and mild to moderate bleeding were randomly assigned to receive either a single infusion of 0.
View Article and Find Full Text PDFImmune thrombocytopenia (ITP) is an autoimmune disease with a complex heterogeneous pathogenesis and a bleeding phenotype that is not necessarily correlated to platelet count. In this study, the platelet function was assessed in a well-defined cohort of 33 pediatric chronic ITP patients. Because regular platelet function test cannot be performed in patients with low platelet counts, 2 new assays were developed to determine platelet function: first, the microaggregation test, measuring in platelets isolated from 10 mL of whole blood the platelet potential to form microaggregates in response to an agonist; second, the platelet reactivity assay, measuring platelet reactivity to adenosine diphosphate (ADP), convulxin (CVX), and thrombin receptor activator peptide in only 150 μL of unprocessed whole blood.
View Article and Find Full Text PDFMany extracellular stimuli regulate growth, survival, and differentiation responses through activation of the dual specificity mitogen activated protein kinase (MAPK) kinase three (MKK3) and its downstream effector p38 MAPK. Using CD34+ hematopoietic progenitor cells, here we describe a novel role for MKK3-p38MAPK in the regulation of myelopoiesis. Inhibition of p38MAPK utilizing the pharmacological inhibitor SB203580, enhanced neutrophil development ex vivo, but conversely reduced eosinophil differentiation.
View Article and Find Full Text PDF