Publications by authors named "Annemie Van Linden"

WEE1 is a cell cycle and DNA damage response kinase that is emerging as a therapeutic target for cancer. AZD1775 is a small molecule inhibitor of WEE1, currently in early phase clinical trials as a single agent and in combination with more conventional anti-neoplastic agents. As resistance to kinase inhibitors is frequent, we sought to identify mechanisms of resistance to WEE1 inhibition in acute leukemia.

View Article and Find Full Text PDF

While some children with acute lymphoblastic leukemia (ALL) have excellent prognoses, the prognosis for adults and children with T cell ALL is more guarded. Treatment for T-ALL is heavily dependent upon antimetabolite chemotherapeutics, including cytarabine. Targeted inhibition of WEE1 with AZD1775 has emerged as a strategy to sensitize cancer cells to cytarabine and other chemotherapeutics.

View Article and Find Full Text PDF

Inhibition of Wee1 is emerging as a novel therapeutic strategy for cancer, and some data suggest that cells with dysfunctional p53 are more sensitive to Wee1 inhibition combined with conventional chemotherapy than those with functional p53. We and others found that Wee1 inhibition sensitizes leukemia cells to cytarabine. Thus, we sought to determine whether chemosensitization by Wee1 inhibition is dependent on p53 dysfunction and whether combining Wee1 inhibition is tolerable and effective in vivo.

View Article and Find Full Text PDF

Leukocyte elastase induces apoptosis of lung epithelial cells via alterations in mitochondrial permeability, but the signaling pathways regulating this response remain uncertain. Here we investigated the involvement of proteinase-activated receptor-1 (PAR-1), the transcription factor NF-kappaB, and the protooncogene p53 in this pathway. Elastase-induced apoptosis of lung epithelial cells correlated temporally with activation of NF-kappaB, phosphorylation, and nuclear translocation of p53, increased p53 up-regulated modulator of apoptosis (PUMA) expression, and mitochondrial translocation of Bax resulting in enhanced permeability.

View Article and Find Full Text PDF

Numerous parallels exist between limited oxygen availability (hypoxia) and acute inflammation. The lungs in particular are prone to acute inflammation during hypoxia, resulting in pulmonary edema, vascular leakage and neutrophil infiltration. The innate response elicited by hypoxia is associated with increased extracellular adenosine effects.

View Article and Find Full Text PDF

Phosphorylation of the TNF-alpha receptor TNF-R1 has been shown to differentially regulate receptor signaling and function and promote changes in its subcellular localization. Previous studies have shown that p42(mapk/erk2) phosphorylates Ser and Thr residues (T236, S240, S244, and S270) in the membrane proximal region of TNF-R1 and that mutation of these residues to Glu and Asp residues (TNF-R1.4D/E) mimics the effect of phosphorylation on receptor signaling and localization.

View Article and Find Full Text PDF