Glucagon-like peptide 1 (GLP-1) stimulated insulin secretion has a considerable heritable component as estimated from twin studies, yet few genetic variants influencing this phenotype have been identified. We performed the first genome-wide association study (GWAS) of GLP-1 stimulated insulin secretion in non-diabetic individuals from the Netherlands Twin register (n = 126). This GWAS was enhanced using a tissue-specific protein-protein interaction network approach.
View Article and Find Full Text PDFAims/hypothesis: Circulating metabolites have been shown to reflect metabolic changes during the development of type 2 diabetes. In this study we examined the association of metabolite levels and pairwise metabolite ratios with insulin responses after glucose, glucagon-like peptide-1 (GLP-1) and arginine stimulation. We then investigated if the identified metabolite ratios were associated with measures of OGTT-derived beta cell function and with prevalent and incident type 2 diabetes.
View Article and Find Full Text PDFUnderstanding the physiological mechanisms by which common variants predispose to type 2 diabetes requires large studies with detailed measures of insulin secretion and sensitivity. Here we performed the largest genome-wide association study of first-phase insulin secretion, as measured by intravenous glucose tolerance tests, using up to 5,567 individuals without diabetes from 10 studies. We aimed to refine the mechanisms of 178 known associations between common variants and glycemic traits and identify new loci.
View Article and Find Full Text PDFThe incretin hormone glucagon-like peptide 1 (GLP-1) promotes glucose homeostasis and enhances β-cell function. GLP-1 receptor agonists (GLP-1 RAs) and dipeptidyl peptidase-4 (DPP-4) inhibitors, which inhibit the physiological inactivation of endogenous GLP-1, are used for the treatment of type 2 diabetes. Using the Metabochip, we identified three novel genetic loci with large effects (30-40%) on GLP-1-stimulated insulin secretion during hyperglycemic clamps in nondiabetic Caucasian individuals (TMEM114; CHST3 and CTRB1/2; n = 232; all P ≤ 8.
View Article and Find Full Text PDFBackground: Genome-wide association studies in Japanese populations recently identified common variants in the KCNQ1 gene to be associated with type 2 diabetes. We examined the association of these variants within KCNQ1 with type 2 diabetes in a Dutch population, investigated their effects on insulin secretion and metabolic traits and on the risk of developing complications in type 2 diabetes patients.
Methodology: The KCNQ1 variants rs151290, rs2237892, and rs2237895 were genotyped in a total of 4620 type 2 diabetes patients and 5285 healthy controls from the Netherlands.
Aims: Compare metabolic responses after mixed versus liquid meals of similar caloric/nutritional content in healthy and type 2 diabetes (T2D) subjects.
Methods: Ten healthy men and 10 men with T2D received mixed and liquid meals after an overnight fast. Classical (insulinogenic index; insulin/glucose areas under curves, AUC(insulin)/AUC(glucose)) and model-based (beta-cell glucose sensitivity; rate sensitivity; potentiation factor ratio, PFR) beta-cell function estimates were calculated.
Context: Single-nucleotide polymorphisms (SNPs) within the G6PC2 locus are associated with fasting glucose and insulin secretion. These SNPs are not associated with type 2 diabetes risk.
Objective: Our objective was to investigate whether the impact of the SNP on variables of glucose-stimulated insulin secretion is influenced by glucose tolerance status.
Objective: Recently, results from a meta-analysis of genome-wide association studies have yielded a number of novel type 2 diabetes loci. However, conflicting results have been published regarding their effects on insulin secretion and insulin sensitivity. In this study we used hyperglycemic clamps with three different stimuli to test associations between these novel loci and various measures of beta-cell function.
View Article and Find Full Text PDFObjective: At least 20 type 2 diabetes loci have now been identified, and several of these are associated with altered beta-cell function. In this study, we have investigated the combined effects of eight known beta-cell loci on insulin secretion stimulated by three different secretagogues during hyperglycemic clamps.
Research Design And Methods: A total of 447 subjects originating from four independent studies in the Netherlands and Germany (256 with normal glucose tolerance [NGT]/191 with impaired glucose tolerance [IGT]) underwent a hyperglycemic clamp.
In an extended twin study we estimated the heritability of fasting HbA1c and blood glucose levels. Blood glucose was assessed in different settings (at home and in the clinic). We tested whether the genetic factors influencing fasting blood glucose levels overlapped with those influencing HbA1c and whether the same genetic factors were expressed across different settings.
View Article and Find Full Text PDF