Cutinases have shown potential for hydrolysis of the recalcitrant synthetic polymer polyethylene terephthalate (PET). We have shown previously that the rate of this hydrolysis can be enhanced by the addition of hydrophobins, small fungal proteins that can alter the physicochemical properties of surfaces. Here we have investigated whether the PET-hydrolyzing activity of a bacterial cutinase from Thermobifida cellulosilytica (Thc_Cut1) would be further enhanced by fusion to one of three Trichoderma hydrophobins, i.
View Article and Find Full Text PDFPoly(ethylene terephthalate) (PET) can be functionalized and/or recycled via hydrolysis by microbial cutinases. The rate of hydrolysis is however low. Here, we tested whether hydrophobins (HFBs), small secreted fungal proteins containing eight positionally conserved cysteine residues, are able to enhance the rate of enzymatic hydrolysis of PET.
View Article and Find Full Text PDFModeling and comparison of the structures of the two closely related cutinases Thc_Cut1 and Thc_Cut2 from Thermobifida cellulosilytica DSM44535 revealed that dissimilarities in their electrostatic and hydrophobic surface properties in the vicinity to the active site could be responsible for pronounced differences in hydrolysis efficiencies of polyester (i.e., PET, polyethyleneterephthalate).
View Article and Find Full Text PDF