Publications by authors named "Annemarie Lekkerkerker"

Article Synopsis
  • Sialic acid (SA) plays a vital role in protecting glycoproteins like Efmarodocokin alfa (IL-22Fc), which is a fusion protein with complex pharmacokinetic (PK) and pharmacodynamic (PD) properties due to its multiple sialylation sites and variability in distribution.* -
  • The study explored how different levels of SA affect IL-22Fc's behavior in mice, revealing that variations in SA significantly influence drug clearance and distribution, and introduced a novel mechanism where reduced SA might enhance drug uptake by endothelial cells.* -
  • Researchers developed a mathematical PKPD model to better understand and predict the effects of SA on IL-22Fc, concluding that while SA does not directly
View Article and Find Full Text PDF
Article Synopsis
  • Inflammatory bowel disease (IBD) includes conditions like ulcerative colitis (UC) and Crohn's disease (CD), which cause chronic inflammation in the digestive tract and highlight the need for easy-to-use noninvasive biomarkers for monitoring disease activity.
  • Researchers used a data-independent acquisition LC-MS/MS method to analyze stool samples from healthy individuals and those with UC or CD, identifying significant differences in protein levels.
  • The study found 688 human proteins in total, with many linked to immune responses and IBD symptoms, confirming known biomarkers and suggesting new ones that could help track disease status and support the development of new treatments.
View Article and Find Full Text PDF

Efmarodocokin alfa (IL-22Fc) is a fusion protein of human IL-22 linked to the crystallizable fragment (Fc) of human IgG4. It has been tested in multiple indications including inflammatory bowel disease (IBD). The purposes of the present analyses were to describe the population pharmacokinetics (PK) of efmarodocokin alfa and perform pharmacodynamic (PD) analysis on the longitudinal changes of the PD biomarker REG3A after efmarodocokin alfa treatment as well as identify covariates that affect efmarodocokin alfa PK and REG3A PD.

View Article and Find Full Text PDF

Receptor-interacting protein 1 (RIP1) is a key regulator of multiple signaling pathways that mediate inflammatory responses and cell death. RIP1 kinase activity mediates apoptosis and necroptosis induced by tumor necrosis factor (TNF)-α, Toll-like receptors, and ischemic tissue damage. RIP1 has been implicated in several human pathologies and consequently, RIP1 inhibition may represent a therapeutic approach for diseases dependent on RIP1-mediated inflammation and cell death.

View Article and Find Full Text PDF

Background: IL-22 is induced by aryl hydrocarbon receptor (AhR) signaling and plays a critical role in gastrointestinal barrier function through effects on antimicrobial protein production, mucus secretion, and epithelial cell differentiation and proliferation, giving it the potential to modulate the microbiome through these direct and indirect effects. Furthermore, the microbiome can in turn influence IL-22 production through the synthesis of L-tryptophan (L-Trp)-derived AhR ligands, creating the prospect of a host-microbiome feedback loop. We evaluated the impact IL-22 may have on the gut microbiome and its ability to activate host AhR signaling by observing changes in gut microbiome composition, function, and AhR ligand production following exogenous IL-22 treatment in both mice and humans.

View Article and Find Full Text PDF

Background: Neuromyelitis optica spectrum disorder (NMOSD) is a rare, autoimmune disease of the central nervous system that produces acute, unpredictable relapses causing cumulative neurological disability. Satralizumab, a humanized, monoclonal recycling antibody that targets the interleukin-6 receptor, reduced NMOSD relapse risk vs. placebo in two Phase 3 trials: SAkuraSky (satralizumab ± immunosuppressive therapy; NCT02028884) and SAkuraStar (satralizumab monotherapy; NCT02073279).

View Article and Find Full Text PDF
Article Synopsis
  • The study evaluated efmarodocokin alfa, a fusion protein agonist of interleukin-22 (IL-22), to assess its safety, tolerability, and pharmacokinetics in healthy volunteers and ulcerative colitis patients over 12 weeks.
  • Common adverse events included reversible dermatological issues, and dose-limiting effects were noted at higher doses, with patients showing lower drug exposure compared to healthy volunteers.
  • The results indicated activation of the IL-22 receptor pathway and showed promising clinical responses in active-treated patients, suggesting further research is warranted for its potential as a non-immunosuppressive treatment for inflammatory bowel disease.
View Article and Find Full Text PDF

Objectives: Severe cases of COVID-19 pneumonia can lead to acute respiratory distress syndrome (ARDS). Release of interleukin (IL)-33, an epithelial-derived alarmin, and IL-33/ST2 pathway activation are linked with ARDS development in other viral infections. IL-22, a cytokine that modulates innate immunity through multiple regenerative and protective mechanisms in lung epithelial cells, is reduced in patients with ARDS.

View Article and Find Full Text PDF

The dysregulation of multiple signaling pathways, including those through endosomal Toll-like receptors (TLRs), Fc gamma receptors (FcγR), and antigen receptors in B cells (BCR), promote an autoinflammatory loop in systemic lupus erythematosus (SLE). Here, we used selective small-molecule inhibitors to assess the regulatory roles of interleukin-1 receptor (IL-1R)-associated kinase 4 (IRAK4) and Bruton's tyrosine kinase (BTK) in these pathways. The inhibition of IRAK4 repressed SLE immune complex- and TLR7-mediated activation of human plasmacytoid dendritic cells (pDCs).

View Article and Find Full Text PDF

Although Interleukin-22 (IL-22) is produced by various leukocytes, it preferentially targets cells with epithelial origins. IL-22 exerts essential roles in modulating various tissue epithelial functions, such as innate host defense against extracellular pathogens, barrier integrity, regeneration, and wound healing. Therefore, IL-22 is thought to have therapeutic potential in treating diseases associated with infection, tissue injury or chronic tissue damage.

View Article and Find Full Text PDF

Most treatments for epithelial injury target hematopoietic mechanisms, possibly causing immunosuppression. Interleukin (IL)-22 promotes tissue regeneration, acting directly on epithelial cells. UTTR1147A, a human IL-22Fc (immunoglobulin G (IgG)4) fusion protein, activates IL-22 signaling.

View Article and Find Full Text PDF

Interleukin (IL)-22 plays protective roles in infections and in inflammatory diseases that have been linked to its meditation of innate immunity via multiple mechanisms. IL-22 binds specifically to its heterodimeric receptor, which is expressed on a variety of epithelial tissues. UTTR1147A is a recombinant fusion protein that links the human cytokine IL-22 with the Fc portion of human immunoglobulin (Ig) G4.

View Article and Find Full Text PDF

Antimicrobial proteins and peptides (AMPs) are a central component of the antibacterial activity of airway epithelial cells. It has been proposed that a decrease in antibacterial lung defense contributes to an increased susceptibility to microbial infection in smokers and patients with chronic obstructive pulmonary disease (COPD). However, whether reduced AMP expression in the epithelium contributes to this lower defense is largely unknown.

View Article and Find Full Text PDF

Basal cells play a critical role in the response of the airway epithelium to injury and are recently recognized to also contribute to epithelial immunity. Antimicrobial proteins and peptides are essential effector molecules in this airway epithelial innate immunity. However, little is known about the specific role of basal cells in antimicrobial protein and peptide production and about the regulation of the ubiquitous antimicrobial protein RNase 7.

View Article and Find Full Text PDF

Improved targeted therapies are needed to combat metastatic prostate cancer. Here, we report the identification of the spleen kinase SYK as a mediator of metastatic dissemination in zebrafish and mouse xenograft models of human prostate cancer. Although SYK has not been implicated previously in this disease, we found that its expression is upregulated in human prostate cancers and associated with malignant progression.

View Article and Find Full Text PDF

Pathogenic mechanisms involved in fibrosis of various organs share many common features. Myofibroblasts are thought to play a major role in fibrosis through excessive deposition of extracellular matrix during wound healing processes. Myofibroblasts are observed in fibrotic lesions, and whereas these derive from the hepatic stellate cells in liver, in lung they appear to originate from fibroblasts.

View Article and Find Full Text PDF

Dendritic cells (DCs), the professional antigen presenting cells, are critical for host immunity by inducing specific immune responses against a broad variety of pathogens. Remarkably the human immunodeficiency virus-1 (HIV-1) subverts DC function leading to spread of the virus. At an early phase of HIV-1 transmission, DCs capture HIV-1 at mucosal surfaces and transmit the virus to T cells in secondary lymphoid tissues.

View Article and Find Full Text PDF

The interaction of DC-SIGN with gp120 provides an attractive target for intervention of HIV-1 transmission. Here, we have investigated the potency of gp120 antibodies to inhibit the DC-SIGN-gp120 interaction. We demonstrate that although the V3 loop is not essential for DC-SIGN binding, antibodies against the V3 loop partially inhibit DC-SIGN binding, suggesting that these antibodies sterically hinder DC-SIGN binding to gp120.

View Article and Find Full Text PDF

Hepatitis C virus (HCV) is a major health problem. However, the mechanism of hepatocyte infection is largely unknown. We demonstrate that the dendritic cell (DC)-specific C-type lectin DC-SIGN and its liver-expressed homologue L-SIGN/DC-SIGNR are important receptors for HCV envelope glycoproteins E1 and E2.

View Article and Find Full Text PDF

Dendritic cells (DCs) play a central role in balancing immune responses between tolerance induction and immune activation. Under steady state conditions DCs continuously sample antigens, leading to tolerance, whereas inflammatory conditions activate DCs, inducing immune activation. DCs express C-type lectin receptors (CLRs) for antigen capture and presentation, whereas Toll-like receptors (TLRs) are involved in pathogen recognition and DC activation.

View Article and Find Full Text PDF