Publications by authors named "Annemarie E Pickersgill"

Direct links between carbonaceous chondrites and their parent bodies in the solar system are rare. The Winchcombe meteorite is the most accurately recorded carbonaceous chondrite fall. Its pre-atmospheric orbit and cosmic-ray exposure age confirm that it arrived on Earth shortly after ejection from a primitive asteroid.

View Article and Find Full Text PDF

Both the Chicxulub and Boltysh impact events are associated with the K-Pg boundary. While Chicxulub is firmly linked to the end-Cretaceous mass extinction, the temporal relationship of the ~24-km-diameter Boltysh impact to these events is uncertain, although it is thought to have occurred 2 to 5 ka before the mass extinction. Here, we conduct the first direct geochronological comparison of Boltysh to the K-Pg boundary.

View Article and Find Full Text PDF

Plagioclase feldspar is one of the most common rock-forming minerals on the surfaces of the Earth and other terrestrial planetary bodies, where it has been exposed to the ubiquitous process of hypervelocity impact. However, the response of plagioclase to shock metamorphism remains poorly understood. In particular, constraining the initiation and progression of shock-induced amorphization in plagioclase (i.

View Article and Find Full Text PDF

The ~180-km-diameter Chicxulub peak-ring crater and ~240-km multiring basin, produced by the impact that terminated the Cretaceous, is the largest remaining intact impact basin on Earth. International Ocean Discovery Program (IODP) and International Continental Scientific Drilling Program (ICDP) Expedition 364 drilled to a depth of 1335 m below the sea floor into the peak ring, providing a unique opportunity to study the thermal and chemical modification of Earth's crust caused by the impact. The recovered core shows the crater hosted a spatially extensive hydrothermal system that chemically and mineralogically modified ~1.

View Article and Find Full Text PDF

The Cretaceous/Palaeogene mass extinction eradicated 76% of species on Earth. It was caused by the impact of an asteroid on the Yucatán carbonate platform in the southern Gulf of Mexico 66 million years ago , forming the Chicxulub impact crater. After the mass extinction, the recovery of the global marine ecosystem-measured as primary productivity-was geographically heterogeneous ; export production in the Gulf of Mexico and North Atlantic-western Tethys was slower than in most other regions, taking 300 thousand years (kyr) to return to levels similar to those of the Late Cretaceous period.

View Article and Find Full Text PDF