Temporal dynamics of confined optical fields can provide valuable insights into light-matter interactions in complex optical systems, going beyond their frequency-domain description. Here, we present a new experimental approach based on interferometric autocorrelation (IAC) that reveals the dynamics of optical near-fields enhanced by collective resonances in periodic metasurfaces. We focus on probing the resonances known as waveguide-plasmon polaritons, which are supported by plasmonic nanoparticle arrays coupled to a slab waveguide.
View Article and Find Full Text PDFSemiconductor nanocrystals, or quantum dots (QDs), simultaneously benefit from inexpensive low-temperature solution processing and exciting photophysics, making them the ideal candidates for next-generation solar cells and photodetectors. While the working principles of these devices rely on light absorption, QDs intrinsically belong to the Rayleigh regime and display optical behavior limited to electric dipole resonances, resulting in low absorption efficiencies. Increasing the absorption efficiency of QDs, together with their electronic and excitonic coupling to enhance charge carrier mobility, is therefore of critical importance to enable practical applications.
View Article and Find Full Text PDFMonocrystalline materials are essential for optoelectronic devices such as solar cells, LEDs, lasers, and transistors to reach the highest performance. Advances in synthetic chemistry now allow for high quality monocrystalline nanomaterials to be grown at low temperature in solution for many materials; however, the realization of extended structures with control over the final 3D geometry still remains elusive. Here, a new paradigm is presented, which relies on epitaxy between monocrystalline nanocube building blocks.
View Article and Find Full Text PDF