Publications by authors named "Annelise Viallat-Lieutaud"

Interactions between prokaryotes and eukaryotes require a dialogue between MAMPs and PRRs. In bacterial peptidoglycan is detected by PGRP receptors. While the components of the signaling cascades activated upon PGN/PGRP interactions are well characterized, little is known about the subcellular events that translate these early signaling steps into target gene transcription.

View Article and Find Full Text PDF

When facing microbes, animals engage in behaviors that lower the impact of the infection. We previously demonstrated that internal sensing of bacterial peptidoglycan reduces female oviposition via NF-κB pathway activation in some neurons (Kurz et al., 2017).

View Article and Find Full Text PDF

Gut-associated bacteria produce metabolites that both have a local influence on the intestinal tract and act at a distance on remote organs. In Drosophila, bacteria-derived peptidoglycan (PGN) displays such a dual role. PGN triggers local antimicrobial peptide production by enterocytes; it also activates systemic immune responses in fat-body cells and modulates fly behavior by acting on neurons.

View Article and Find Full Text PDF

Downregulation of the potassium chloride cotransporter type 2 (KCC2) after a spinal cord injury (SCI) disinhibits motoneurons and dorsal horn interneurons causing spasticity and neuropathic pain, respectively. We showed recently (Bos et al., 2013) that specific activation of 5-HT receptors by TCB-2 [(4-bromo-3,6-dimethoxybenzocyclobuten-1-yl)methylamine hydrobromide] upregulates KCC2 function, restores motoneuronal inhibition and reduces SCI-induced spasticity.

View Article and Find Full Text PDF

Peptidoglycan (PGN) detection by PGN recognition proteins (PGRP) is the main trigger of the antibacterial immune response in Drosophila. Depending on the type of immune cell, PGN can be sensed either at the cell membrane by PGRP-LC or inside the cell by PGRP-LE, which plays a role similar to that of Nod2 in mammals. Previous work, mainly in cell cultures, has shown that oligopeptide transporters of the SLC15 family are essential for the delivery of PGN for Nod2 detection inside of the cells, and that this function might be conserved in flies.

View Article and Find Full Text PDF

As infectious diseases pose a threat to host integrity, eukaryotes have evolved mechanisms to eliminate pathogens. In addition to develop strategies reducing infection, animals can engage in behaviors that lower the impact of the infection. The molecular mechanisms by which microbes impact host behavior are not well understood.

View Article and Find Full Text PDF

Polarity protein complexes function during polarized cell migration and a subset of these proteins localizes to the reoriented centrosome during this process. Despite these observations, the mechanisms behind the recruitment of these polarity complexes such as the aPKC/PAR6α complex to the centrosome are not well understood. Here we identify Hook2 as an interactor for the aPKC/PAR6α complex that functions to localize this complex at the centrosome.

View Article and Find Full Text PDF

Upregulation of the persistent sodium current (I(NaP)) in motoneurons contributes to the development of spasticity after spinal cord injury (SCI). We investigated the mechanisms that regulate I(NaP) and observed elevated expression of voltage-gated sodium (Nav) 1.6 channels in spinal lumbar motoneurons of adult rats with SCI.

View Article and Find Full Text PDF