In this study, hazardous wastes including fluff, dust, and scrubbing sludge were sampled in 2019 from two metal shredding facilities located in Wallonia, Belgium. To assess the extent of the contamination, a global approach combining chemical and biological techniques was used, to better reflect the risks to health and the environment. The samples investigated induced significant in vitro aryl hydrocarbon receptor (AhR) agonistic bioactivities and estrogenic receptor (ERα) (ant)agonistic bioactivities in the respective CALUX (chemical activated luciferase gene expression) bioassays.
View Article and Find Full Text PDFThe choriogenin H - EGFP transgenic medaka (Oryzias melastigma) has been used to test estrogenic substances and quantify estrogenic activity into 17β-estradiol (E2) equivalency (EEQ). The method uses 8 eleutheroembryos in 2 ml solution per well and 3 wells per treatment in 24-well plates at 26 ± 1 °C for 24 ± 2 h, with subsequent measurements of induced GFP signal intensity. EEQ measurements are calculated using a E2 probit regression model with a coefficient of determination (R) > 0.
View Article and Find Full Text PDFZebrafish embryos (ZFE) have increasingly gained in popularity as a model to perform safety screenings of compounds. Although immersion of ZFE is the main route of exposure used, evidence shows that not all small molecules are equally absorbed, possibly resulting in false-negative readouts and incorrect conclusions. In this study, we compared the pharmacokinetics of seven fluorescent compounds with known physicochemical properties that were administered to two-cell stage embryos by immersion or by IY microinjection.
View Article and Find Full Text PDFZebrafish (Danio rerio) is increasingly used to assess the pharmacological activity and toxicity of compounds. The spatiotemporal distribution of seven fluorescent alkyne compounds was examined during 48 h after immersion (10 µM) or microinjection (2 mg/kg) in the pericardial cavity (PC), intraperitoneally (IP) and yolk sac (IY) of 3 dpf zebrafish eleuthero-embryos. By modelling the fluorescence of whole-body contours present in fluorescence images, the main pharmacokinetic (PK) parameter values of the compounds were determined.
View Article and Find Full Text PDFWe have recently established that human norovirus (HuNoV) replicates efficiently in zebrafish larvae after inoculation of a clinical sample into the yolk, providing a simple and robust in vivo system in which to study HuNoV. In this Protocol Extension, we present a detailed description of virus inoculation by microinjection, subsequent daily monitoring and harvesting of larvae, followed by viral RNA quantification. This protocol can be used to study viral replication of genogroup (G)I and GII HuNoVs in vivo within 3-4 d.
View Article and Find Full Text PDFWith the aim to explore the possibility to generate a zebrafish model of renal fibrosis, in this study the fibrogenic renal effect of aristolochic acid I (AAI) after immersion was assessed. This compound is highly nephrotoxic able to elicit renal fibrosis after exposure of rats and humans. Our results reveal that larval zebrafish at 15 days dpf (days post-fertilization) exposed for 8 days to 0.
View Article and Find Full Text PDFHuman noroviruses (HuNoVs) are the most common cause of foodborne illness, with a societal cost of $60 billion and 219,000 deaths/year. The lack of robust small animal models has significantly hindered the understanding of norovirus biology and the development of effective therapeutics. Here we report that HuNoV GI and GII replicate to high titers in zebrafish (Danio rerio) larvae; replication peaks at day 2 post infection and is detectable for at least 6 days.
View Article and Find Full Text PDFZebrafish-based platforms have recently emerged as a useful tool for toxicity testing as they combine the advantages of in vitro and in vivo methodologies. Nevertheless, the capacity to metabolically convert xenobiotics by zebrafish eleuthero embryos is supposedly low. To circumvent this concern, a comprehensive methodology was developed wherein test compounds (i.
View Article and Find Full Text PDFEthnopharmacological Relevance: Semen Pharbitidis, the seeds of Pharbitis nil (Linn.) Choisy (Convolvulaceae) is a well-known traditional Chinese medicinal plant used for treating helminthiasis and epilepsy in China.
Aim Of The Study: This study aims to identify the anti-seizure components from Semen Pharbitidis.
Epilepsy is a neurological disease that affects more than 70 million people worldwide and is characterized by the presence of spontaneous unprovoked recurrent seizures. Existing anti-seizure drugs (ASDs) have side effects and fail to control seizures in 30% of patients due to drug resistance. Hence, safer and more efficacious drugs are sorely needed.
View Article and Find Full Text PDFDrug-induced liver injury (DILI) is the most common reason for failures during the drug development process and for safety-related withdrawal of drugs from the pharmaceutical market. Therefore, having tools and techniques that can detect hepatotoxic properties in drug candidates at an early discovery stage is highly desirable. In this study, cell imaging counting was used to measure in a fast, straightforward, and unbiased way the effect of paracetamol and tetracycline, (compounds known to cause hepatotoxicity in humans) on the amount of DsRed-labeled hepatocytes recovered by protease digestion from Tg() transgenic zebrafish.
View Article and Find Full Text PDFThe human ubiquitous protein cystinosin is responsible for transporting the disulphide amino acid cystine from the lysosomal compartment into the cytosol. In humans, Pathogenic mutations of CTNS lead to defective cystinosin function, intralysosomal cystine accumulation and the development of cystinosis. Kidneys are initially affected with generalized proximal tubular dysfunction (renal Fanconi syndrome), then the disease rapidly affects glomeruli and progresses towards end stage renal failure and multiple organ dysfunction.
View Article and Find Full Text PDFNanomaterials are being extensively produced and applied in society. Human and environmental exposures are, therefore, inevitable and so increased attention is being given to nanotoxicity. While silica nanoparticles (NP) are one of the top five nanomaterials found in consumer and biomedical products, their toxicity profile is poorly characterized.
View Article and Find Full Text PDFThe importance of the blood- and lymph vessels in the transport of essential fluids, gases, macromolecules and cells in vertebrates warrants optimal insight into the regulatory mechanisms underlying their development. Mouse and zebrafish models of lymphatic development are instrumental for gene discovery and gene characterization but are challenging for certain aspects, e.g.
View Article and Find Full Text PDFThe molecular basis of lymphangiogenesis remains incompletely characterized. Here, we document a novel role for the PDZ domain-containing scaffold protein synectin in lymphangiogenesis using genetic studies in zebrafish and tadpoles. In zebrafish, the thoracic duct arises from parachordal lymphangioblast cells, which in turn derive from secondary lymphangiogenic sprouts from the posterior cardinal vein.
View Article and Find Full Text PDFArterioscler Thromb Vasc Biol
September 2010
Objective: To study whether Notch signaling, which regulates cell fate decisions and vessel morphogenesis, controls lymphatic development.
Methods And Results: In zebrafish embryos, sprouts from the axial vein have lymphangiogenic potential because they give rise to the first lymphatics. Knockdown of delta-like-4 (Dll4) or its receptors Notch-1b or Notch-6 in zebrafish impaired lymphangiogenesis.
The Claudin-like protein of 24 kDa (CLP24) is a hypoxia-regulated transmembrane protein of unknown function. We show here that clp24 knockdown in Danio rerio and Xenopus laevis results in defective lymphatic development. Targeted disruption of Clp24 in mice led to enlarged lymphatic vessels having an abnormal smooth muscle cell coating.
View Article and Find Full Text PDFThe lymphatic vasculature is important for the regulation of tissue fluid homeostasis, immune response, and lipid absorption, and the development of in vitro models should allow for a better understanding of the mechanisms regulating lymphatic vascular growth, repair, and function. Here we report isolation and characterization of lymphatic endothelial cells from human intestine and show that intestinal lymphatic endothelial cells have a related but distinct gene expression profile from human dermal lymphatic endothelial cells. Furthermore, we identify liprin beta1, a member of the family of LAR transmembrane tyrosine phosphatase-interacting proteins, as highly expressed in intestinal lymphatic endothelial cells in vitro and lymphatic vasculature in vivo, and show that it plays an important role in the maintenance of lymphatic vessel integrity in Xenopus tadpoles.
View Article and Find Full Text PDFMucin-type O-glycans (O-glycans) are highly expressed in vascular ECs. However, it is not known whether they are important for vascular development. To investigate the roles of EC O-glycans, we generated mice lacking T-synthase, a glycosyltransferase encoded by the gene C1galt1 that is critical for the biosynthesis of core 1-derived O-glycans, in ECs and hematopoietic cells (termed here EHC T-syn(-/-) mice).
View Article and Find Full Text PDFThe importance of the lymphangiogenic factor VEGF-D and its receptor VEGFR-3 in early lymphatic development remains largely unresolved. We therefore investigated their role in Xenopus laevis tadpoles, a small animal model allowing chemicogenetic dissection of developmental lymphangiogenesis. Single morpholino antisense oligo knockdown of xVEGF-D did not affect lymphatic commitment, but transiently impaired lymphatic endothelial cell (LEC) migration.
View Article and Find Full Text PDFSchneider and colleagues say that the new model, published in promises to increase our understanding of lymphedema and hopefully accelerate the development and testing of new treatments.
View Article and Find Full Text PDFWe have previously presented evidence that two human kallikrein-related peptidases, KLK5 (hK5, stratum corneum tryptic enzyme, SCTE) and KLK7 (hK7, stratum corneum chymotryptic enzyme, SCCE), which are abundant in the stratum corneum, may be involved in desquamation. Since we had noted that not all trypsin-like activity in the plantar stratum corneum could be ascribed to KLK5, we set out to identify other skin proteases with similar primary substrate specificity. Here we describe purification of a protease identified as KLK14 from plantar stratum corneum, and show that this enzyme may be responsible for as much as 50% of the total trypsin-like activity in this tissue, measured as activity towards a chromogenic substrate cleaved by a wide variety of enzymes with trypsin-like specificity.
View Article and Find Full Text PDFMany studies have suggested the hypothesis that the plasminogen activator (PA) system and the matrix metalloproteinase (MMP) system, either separately or in combination, may provide the proteolytic activity that is required for rupture of the follicular wall at the time of ovulation. Our recent studies on ovulation in plasminogen (plg)-deficient mice have, however, shown that plasmin is not required for normal ovulation, leading us to the hypothesis that MMPs may be a more important source of proteolysis for this process. To investigate the role of MMPs and also the possibility of a functional overlap or synergy between the MMP and PA systems during ovulation, we have studied ovulation efficiency in wild-type and plg-deficient mice treated with the broad-spectrum MMP inhibitor galardin.
View Article and Find Full Text PDF