Publications by authors named "Annelies Bronckaers"

Hypoxia is a common feature of solid tumours and activates adaptation mechanisms in cancer cells that induce therapy resistance and has profound effects on cellular metabolism. As such, hypoxia is an important contributor to cancer progression and is associated with a poor prognosis. Metabolic alterations in cells within the tumour microenvironment support tumour growth via, amongst others, the suppression of immune reactions and the induction of angiogenesis.

View Article and Find Full Text PDF

Ameloblasts are the specialized dental epithelial cell type responsible for enamel formation. Following completion of enamel development in humans, ameloblasts are lost and biological repair or regeneration of enamel is not possible. In the past, in vitro models to study dental epithelium and ameloblast biology were limited to freshly isolated primary cells or immortalized cell lines, both with limited translational potential.

View Article and Find Full Text PDF

Macrophages play major roles in the pathophysiology of various neurological disorders, being involved in seemingly opposing processes such as lesion progression and resolution. Yet, the molecular mechanisms that drive their harmful and benign effector functions remain poorly understood. Here, we demonstrate that extracellular vesicles (EVs) secreted by repair-associated macrophages (RAMs) enhance remyelination ex vivo and in vivo by promoting the differentiation of oligodendrocyte precursor cells (OPCs).

View Article and Find Full Text PDF

Vascular cognitive impairment (VCI) describes neurodegenerative disorders characterized by a vascular component. Pathologically, it involves decreased cerebral blood flow (CBF), white matter lesions, endothelial dysfunction, and blood-brain barrier (BBB) impairments. Molecularly, oxidative stress and inflammation are two of the major underlying mechanisms.

View Article and Find Full Text PDF

Leukocyte- and Platelet-Rich Fibrin (L-PRF) is a second-generation platelet concentrate that is prepared directly from the patient's own blood. It is widely used in the field of regenerative medicine, and to better understand its clinical applicability we aimed to further explore the biological properties and effects of L-PRF on cells from the central and peripheral nervous system. To this end, L-PRF was prepared from healthy human donors, and confocal, transmission, and scanning electron microscopy as well as secretome analysis were performed on these clots.

View Article and Find Full Text PDF

Extremely low-frequency electromagnetic stimulation (ELF-EMS) was demonstrated to be significantly beneficial in rodent models of permanent stroke. The mechanism involved enhanced cerebrovascular perfusion and endothelial cell nitric oxide production. However, the possible effect on the neuroinflammatory response and its efficacy in reperfusion stroke models remains unclear.

View Article and Find Full Text PDF

Bioactive nanomaterials are increasingly being applied in oral health research. Specifically, they have shown great potential for periodontal tissue regeneration and have substantially improved oral health in translational and clinical applications. However, their limitations and side effects still need to be explored and elucidated.

View Article and Find Full Text PDF

Mesenchymal stem cells (MSCs) are used for regenerative therapy. Dental pulp MSCs make extracted wisdom teeth a useful resource in humans. Preclinical validation of regenerative therapies requires large animal models such as the sheep.

View Article and Find Full Text PDF

Stem cell therapy might be a promising method to stimulate alveolar bone regeneration, which is currently a major clinical challenge. However, its therapeutic features largely depend on pretreatment and transplantation preparation. Herein, a novel biomimetic periodontal ligament transplantation composed of human periodontal ligament stem cells (hPDLSCs) pretreated with gold nanocomplexes (AuNCs) and embedded in a type-I collagen hydrogel scaffold is developed to protect alveolar bone from resorption.

View Article and Find Full Text PDF

Organoid models provide powerful tools to study tissue biology and development in a dish. Presently, organoids have not yet been developed from mouse tooth. Here, we established tooth organoids (TOs) from early-postnatal mouse molar and incisor, which are long-term expandable, express dental epithelium stem cell (DESC) markers, and recapitulate key properties of the dental epithelium in a tooth-type-specific manner.

View Article and Find Full Text PDF

Angiogenesis, barriergenesis, and immune cell migration are all key physiological events that are dependent on the functional characteristics of the vascular endothelium. The protein family of Nectins and Nectin-like molecules (Necls) is a group of cell adhesion molecules that are widely expressed by different endothelial cell types. The family includes four Nectins (Nectin-1 to -4) and five Necls (Necl-1 to -5) that either interact with each other by forming homo- and heterotypical interactions or bind to ligands expressed within the immune system.

View Article and Find Full Text PDF

Mesenchymal stromal cells (MSCs) are a promising therapy for various diseases ranging from ischemic stroke to wound healing and cancer. Their therapeutic effects are mainly mediated by secretome-derived paracrine factors, with extracellular vesicles (EVs) proven to play a key role. This has led to promising research on the potential of MSC-EVs as regenerative, off-the-shelf therapeutic agents.

View Article and Find Full Text PDF

L-arginine is a semi-essential amino acid involved in a variety of physiological processes in the central nervous system (CNS). It is essential in the survival and functionality of neuronal cells. Nonetheless, L-arginine also has a dark side; it potentiates neuroinflammation and nitric oxide (NO) production, leading to secondary damage.

View Article and Find Full Text PDF

Single-cell (sc) omics has become a powerful tool to unravel a tissue's cell landscape across health and disease. In recent years, sc transcriptomic interrogation has been applied to a variety of tooth tissues of both human and mouse, which has considerably advanced our fundamental understanding of tooth biology. Now, an overarching and integrated bird's-view of the human and mouse tooth sc transcriptomic landscape would be a powerful multi-faceted tool for dental research, enabling further decipherment of tooth biology and development through constantly progressing state-of-the-art bioinformatic methods as well as the exploration of novel hypothesis-driven research.

View Article and Find Full Text PDF

Temperature and strain are two vital parameters that play a significant role in wound diagnosis and healing. As periodic temperature measurements with a custom thermometer or strain measurements with conventional metallic gauges became less feasible for the modern competent health monitoring, individual temperature and strain measurement modalities incorporated into wearables and patches were developed. The proposed research in the article shows the development of a single sensor solution which can simultaneously measure both the above mentioned parameters.

View Article and Find Full Text PDF

The ability of immune-modulating biologics to prevent and reverse pathology has transformed recent clinical practice. Full utility in the neuroinflammation space, however, requires identification of both effective targets for local immune modulation and a delivery system capable of crossing the blood-brain barrier. The recent identification and characterization of a small population of regulatory T (T) cells resident in the brain presents one such potential therapeutic target.

View Article and Find Full Text PDF

Teeth are of key importance in life not only for food mastication and speech but also for psychological well-being. Knowledge on human tooth development and biology is scarce. In particular, not much is known about the tooth's epithelial stem cells and their function.

View Article and Find Full Text PDF

Insight into human tooth epithelial stem cells and their biology is sparse. Tissue-derived organoid models typically replicate the tissue's epithelial stem cell compartment. Here, we developed a first-in-time epithelial organoid model starting from human tooth.

View Article and Find Full Text PDF

Extremely low frequency electromagnetic stimulation (ELF-EMS) has been considered as a neuroprotective therapy for ischemic stroke based on its capacity to induce nitric oxide (NO) signaling. Here, we examined whether ELF-EMS reduces ischemic stroke volume by stimulating cerebral collateral perfusion. Moreover, the pathway responsible for ELF-EMS-induced NO production was investigated.

View Article and Find Full Text PDF

Although spontaneous recovery can occur following ischemic stroke due to endogenous neuronal reorganization and neuroplastic events, the degree of functional improvement is highly variable, causing many patients to remain permanently impaired. In the last decades, non-invasive brain stimulation (NIBS) techniques have emerged as potential add-on interventions to the standard neurorehabilitation programs to improve post-stroke recovery. Due to their ability to modulate cortical excitability and to induce neuroreparative processes in the brain, multiple studies have assessed the safety, efficacy and (sub)cellular mechanisms of NIBS following ischemic stroke.

View Article and Find Full Text PDF

Teeth play essential roles in life. Their development relies on reciprocal interactions between the ectoderm-derived dental epithelium and the underlying neural crest-originated mesenchyme. This odontogenic process serves as a prototype model for the development of ectodermal appendages.

View Article and Find Full Text PDF

Gold nanocomplexes have been proposed as contrast agents for computerized tomography (CT) and cell tracking, which is especially useful in stem cell therapy. However, their potential for long-term in vivo cell detection is still unknown. This study proposes an optimized approach to labeling human periodontal ligament stem cells (hPDLSCs) with gold nanocomplexes to evaluate their detection with micro-CT after transplantation at four different rat tissues.

View Article and Find Full Text PDF

Cerebral stroke is a leading cause of death and adult-acquired disability worldwide. To this date, treatment options are limited; hence, the search for new therapeutic approaches continues. Electromagnetic fields (EMFs) affect a wide variety of biological processes and accumulating evidence shows their potential as a treatment for ischemic stroke.

View Article and Find Full Text PDF

Myocardial infarction (MI) occurs when the coronary blood supply is interrupted. As a consequence, cardiomyocytes are irreversibly damaged and lost. Unfortunately, current therapies for MI are unable to prevent progression towards heart failure.

View Article and Find Full Text PDF