Background: Magnesium (Mg(2+)) is an essential electrolyte with important physiological functions. Consequently, hypomagnesaemia, an electrolyte disorder frequently diagnosed in critically ill patients, can have life-threatening consequences. The kidney plays a central role in the regulation of the Mg(2+) balance.
View Article and Find Full Text PDFBackground: Furosemide is a loop diuretic, which blocks the Na(+), K(+), 2Cl(-) cotransporter (NKCC2) in the thick ascending limb of Henle (TAL). By diminishing sodium (Na(+)) reabsorption, loop diuretics reduce the lumen-positive transepithelial voltage and consequently diminish paracellular transport of magnesium (Mg(2+)) and calcium (Ca(2+)) in TAL. Indeed, furosemide promotes urinary Mg(2+) excretion; however, it is unclear whether this leads, especially during prolonged treatment, to hypomagnesaemia.
View Article and Find Full Text PDFBackground: Cisplatin is an effective anti-neoplastic drug, but its clinical use is limited due to dose-dependent nephrotoxicity. The majority of cisplatin-treated patients develop hypomagnesaemia, often associated with a reduced glomerular filtration rate (GFR), polyuria and other electrolyte disturbances. The aim of this study is to unravel the molecular mechanism responsible for these particular electrolyte disturbances.
View Article and Find Full Text PDFThe major PKC substrates MARCKS and MacMARCKS (MRP) are membrane-binding proteins implicated in cell spreading, integrin activation and exocytosis. According to the myristoyl-electrostatic switch model the co-operation between the myristoyl moiety and the positively charged effector domain (ED) is an essential mechanism by which proteins bind to membranes. Loss of the electrostatic interaction between the ED and phospholipids, such as Ptdins(4,5)P2, results in the translocation of such proteins to the cytoplasm.
View Article and Find Full Text PDF