Anthropogenic stressors like overfishing, land based runoff, and increasing temperatures cause the degradation of coral reefs, leading to the loss of corals and other calcifiers, increases in competitive fleshy algae, and increases in microbial pathogen abundance and hypoxia. To test the hypothesis that corals would be healthier by moving them off the benthos, a common garden experiment was conducted in which corals were translocated to midwater geodesic spheres (hereafter called Coral Reef Arks or Arks). Coral fragments translocated to the Arks survived significantly longer than equivalent coral fragments translocated to Control sites (.
View Article and Find Full Text PDFAll biology happens in space, and spatial structuring plays an important role in mediating biological processes at all scales from cells to ecosystems. However, the metabolomic structuring of the coral holobiont has yet to be fully explored. Here, we present a method to detect high-quality metabolomic data from individual coral polyps and apply this method to study the patterning of biochemicals across multiple spatial (~1 mm - ~100 m) and organizational scales (polyp to population).
View Article and Find Full Text PDFCoral reefs thrive and provide maximal ecosystem services when they support a multi-level trophic structure and grow in favorable water quality conditions that include high light levels, rapid water flow, and low nutrient levels. Poor water quality and other anthropogenic stressors have caused coral mortality in recent decades, leading to trophic downgrading and the loss of biological complexity on many reefs. Solutions to reverse the causes of trophic downgrading remain elusive, in part because efforts to restore reefs are often attempted in the same diminished conditions that caused coral mortality in the first place.
View Article and Find Full Text PDF