Background: Older individuals generally experience a reduced food-chewing efficiency. As a consequence, food texture may represent an important factor that modulates dietary protein digestion and absorption kinetics and the subsequent postprandial protein balance.
Objective: We assessed the effect of meat texture on the dietary protein digestion rate, amino acid availability, and subsequent postprandial protein balance in vivo in older men.
Aging is associated with a progressive decline in skeletal muscle mass. It has been hypothesized that an attenuated muscle protein synthetic response to the main anabolic stimuli may contribute to the age-related loss of muscle tissue. The aim of the present study was to compare the muscle protein synthetic response following ingestion of a meal-like amount of dietary protein plus carbohydrate between healthy young and older men.
View Article and Find Full Text PDFBackground: A blunted muscle protein synthetic response to protein ingestion may contribute to the age related loss of muscle tissue. We hypothesized that the greater endogenous insulin release following co-ingestion of carbohydrate facilitates post-prandial muscle protein accretion after ingesting a meal-like bolus of protein in older males.
Methods: Twenty-four healthy older men (75±1 y) were randomly assigned to ingest 20 g intrinsically L-[1-13C] phenylalanine-labeled casein protein with (PRO-CHO) or without (PRO) 40 g carbohydrate.
Background & Aims: It has been speculated that the amount of leucine in a meal largely determines the post-prandial muscle protein synthetic response to food intake. The present study investigates the impact of leucine co-ingestion on subsequent post-prandial muscle protein accretion following the ingestion of a single bolus of dietary protein in elderly males.
Methods: Twenty-four elderly men (74.
Whey protein ingestion has been shown to effectively stimulate postprandial muscle protein accretion in older adults. However, the impact of the amount of whey protein ingested on protein digestion and absorption kinetics, whole body protein balance, and postprandial muscle protein accretion remains to be established. We aimed to fill this gap by including 33 healthy, older men (73 ± 2 yr) who were randomly assigned to ingest 10, 20, or 35 g of intrinsically l-[1-¹³C]phenylalanine-labeled whey protein (n = 11/treatment).
View Article and Find Full Text PDF