Publications by authors named "Anneke Vulto- van Silfhout"

The heterotrimeric protein phosphatase 2A (PP2A) complex catalyzes about half of Ser/Thr dephosphorylations in eukaryotic cells. A CAG repeat expansion in the neuron-specific protein PP2A regulatory subunit PPP2R2B gene causes spinocerebellar ataxia type 12 (SCA12). We established five monoallelic missense variants in PPP2R2B (four confirmed as de novo) as a cause of intellectual disability with developmental delay (R149P, T246K, N310K, E37K, I427T).

View Article and Find Full Text PDF

Objective: There is currently scarce data on the electroclinical characteristics of epilepsy associated with synapsin 1 (SYN1) pathogenic variations. We examined clinical and electro-encephalographic (EEG) features in patients with epilepsy and SYN1 variants, with the aim of identifying a distinctive electroclinical pattern.

Methods: In this retrospective multicenter study, we collected and reviewed demographic, genetic, and epilepsy data of 19 male patients with SYN1 variants.

View Article and Find Full Text PDF

MPDZ, a gene with diverse functions mediating cell-cell junction interactions, receptor signaling, and binding multivalent scaffold proteins, is associated with a spectrum of clinically heterogeneous phenotypes with biallelic perturbation. Despite its clinical relevance, the mechanistic underpinnings of these variants remain elusive, underscoring the need for extensive case series and functional investigations. In this study, we conducted a systematic review of cases in the literature through two electronic databases following the PRISMA guidelines.

View Article and Find Full Text PDF
Article Synopsis
  • The study highlights the lack of understanding regarding comorbidities in individuals with neurodevelopmental disorders (NDDs), which are crucial for accurate diagnosis and prognosis.
  • PhenomAD-NDD is a newly developed database that compiles comorbid phenotypic data from over 51,000 individuals with NDD, utilizing a standardized classification known as Human Phenotype Ontology (HPO).
  • The findings reveal that congenital anomalies are significantly more common in the NDD population compared to the general population, and highlight that many important phenotypes related to genetic NDDs are not currently documented in existing clinical resources like OMIM.
View Article and Find Full Text PDF
Article Synopsis
  • - PhenoScore is an open-source AI framework that combines facial recognition technology and Human Phenotype Ontology data to analyze and quantify phenotypic similarities in individuals.
  • - It successfully identifies distinct phenotypes for most of the 40 syndromes studied and proves to be more effective than previous methods in genotype-phenotype correlation investigations.
  • - PhenoScore also helps clarify roles of specific genetic variants by confirming known phenotypic subgroups in certain genes and providing clinical evidence for different ADNP-related phenotypes.
View Article and Find Full Text PDF

We report 21 families displaying neurodevelopmental differences and multiple congenital anomalies while bearing a series of rare variants in (). MAP4K4 has been implicated in many signaling pathways including c-Jun N-terminal and RAS kinases and is currently under investigation as a druggable target for multiple disorders. Using several zebrafish models, we demonstrate that these human variants are either loss-of-function or dominant-negative alleles and show that decreasing Map4k4 activity causes developmental defects.

View Article and Find Full Text PDF

Purpose: Protein arginine methyltransferase 7 (PRMT7) is a member of a family of enzymes that catalyzes the methylation of arginine residues on several protein substrates. Biallelic pathogenic PRMT7 variants have previously been associated with a syndromic neurodevelopmental disorder characterized by short stature, brachydactyly, intellectual developmental disability, and seizures. To our knowledge, no comprehensive study describes the detailed clinical characteristics of this syndrome.

View Article and Find Full Text PDF

SLITRK2 is a single-pass transmembrane protein expressed at postsynaptic neurons that regulates neurite outgrowth and excitatory synapse maintenance. In the present study, we report on rare variants (one nonsense and six missense variants) in SLITRK2 on the X chromosome identified by exome sequencing in individuals with neurodevelopmental disorders. Functional studies showed that some variants displayed impaired membrane transport and impaired excitatory synapse-promoting effects.

View Article and Find Full Text PDF

Purpose: Genome-wide sequencing is increasingly being performed during pregnancy to identify the genetic cause of congenital anomalies. The interpretation of prenatally identified variants can be challenging and is hampered by our often limited knowledge of prenatal phenotypes. To better delineate the prenatal phenotype of Coffin-Siris syndrome (CSS), we collected clinical data from patients with a prenatal phenotype and a pathogenic variant in one of the CSS-associated genes.

View Article and Find Full Text PDF

Purpose: CTR9 is a subunit of the PAF1 complex (PAF1C) that plays a crucial role in transcription regulation by binding CTR9 to RNA polymerase II. It is involved in transcription-coupled histone modification through promoting H3K4 and H3K36 methylation. We describe the clinical and molecular studies in 13 probands, harboring likely pathogenic CTR9 missense variants, collected through GeneMatcher.

View Article and Find Full Text PDF

Recurrence risk calculations in autosomal recessive diseases are complicated when the effect of genetic variants and their population frequencies and penetrances are unknown. An example of this is Stargardt disease (STGD1), a frequent recessive retinal disease caused by bi-allelic pathogenic variants in ABCA4. In this cross-sectional study, 1,619 ABCA4 variants from 5,579 individuals with STGD1 were collected and categorized by (1) severity based on statistical comparisons of their frequencies in STGD1-affected individuals versus the general population, (2) their observed versus expected homozygous occurrence in STGD1-affected individuals, (3) their occurrence in combination with established mild alleles in STGD1-affected individuals, and (4) previous functional and clinical studies.

View Article and Find Full Text PDF

Purpose: Although the introduction of exome sequencing (ES) has led to the diagnosis of a significant portion of patients with neurodevelopmental disorders (NDDs), the diagnostic yield in actual clinical practice has remained stable at approximately 30%. We hypothesized that improving the selection of patients to test on the basis of their phenotypic presentation will increase diagnostic yield and therefore reduce unnecessary genetic testing.

Methods: We tested 4 machine learning methods and developed PredWES from these: a statistical model predicting the probability of a positive ES result solely on the basis of the phenotype of the patient.

View Article and Find Full Text PDF

Zhu-Tokita-Takenouchi-Kim (ZTTK) syndrome, an intellectual disability syndrome first described in 2016, is caused by heterozygous loss-of-function variants in SON. Its encoded protein promotes pre-mRNA splicing of many genes essential for development. Whereas individual phenotypic traits have previously been linked to erroneous splicing of SON target genes, the phenotypic spectrum and the pathogenicity of missense variants have not been further evaluated.

View Article and Find Full Text PDF

The need to interpret the pathogenicity of novel missense variants of unknown significance identified in the homeodomain of X-chromosome aristaless-related homeobox (ARX) gene prompted us to assess the utility of conservation and constraint across these domains in multiple genes compared to conventional in vitro functional analysis. Pathogenic missense variants clustered in the homeodomain of ARX contribute to intellectual disability (ID) and epilepsy, with and without brain malformation in affected males. Here we report novel c.

View Article and Find Full Text PDF

By using exome sequencing and a gene matching approach, we identified de novo and inherited pathogenic variants in KDM3B in 14 unrelated individuals and three affected parents with varying degrees of intellectual disability (ID) or developmental delay (DD) and short stature. The individuals share additional phenotypic features that include feeding difficulties in infancy, joint hypermobility, and characteristic facial features such as a wide mouth, a pointed chin, long ears, and a low columella. Notably, two individuals developed cancer, acute myeloid leukemia and Hodgkin lymphoma, in childhood.

View Article and Find Full Text PDF

Purpose: To investigate the effect of different DEAF1 variants on the phenotype of patients with autosomal dominant and recessive inheritance patterns and on DEAF1 activity in vitro.

Methods: We assembled a cohort of 23 patients with de novo and biallelic DEAF1 variants, described the genotype-phenotype correlation, and investigated the differential effect of de novo and recessive variants on transcription assays using DEAF1 and Eif4g3 promoter luciferase constructs.

Results: The proportion of the most prevalent phenotypic features, including intellectual disability, speech delay, motor delay, autism, sleep disturbances, and a high pain threshold, were not significantly different in patients with biallelic and pathogenic de novo DEAF1 variants.

View Article and Find Full Text PDF
Article Synopsis
  • The article had a spelling error in the author's name, Pleuntje J. van der Sluijs.
  • It was incorrectly listed as Eline (P. J.) van der Sluijs.
  • The error has been fixed in both the PDF and HTML formats of the article.
View Article and Find Full Text PDF

Purpose: Pathogenic variants in ARID1B are one of the most frequent causes of intellectual disability (ID) as determined by large-scale exome sequencing studies. Most studies published thus far describe clinically diagnosed Coffin-Siris patients (ARID1B-CSS) and it is unclear whether these data are representative for patients identified through sequencing of unbiased ID cohorts (ARID1B-ID). We therefore sought to determine genotypic and phenotypic differences between ARID1B-ID and ARID1B-CSS.

View Article and Find Full Text PDF

Clinical genomic sequencing can identify pathogenic variants unrelated to the initial clinical question, but of medical relevance to the patients and their families. With ongoing discussions on the utility of disclosing or searching for such variants, it is of crucial importance to obtain unbiased insight in the prevalence of these incidental or secondary findings, in order to better weigh potential risks and benefits. Previous studies have reported a broad range of secondary findings ranging from 1 to 9%, merely attributable to differences in study design, cohorts tested, sequence technology used and genes analyzed.

View Article and Find Full Text PDF

We report an unusual case of an adult patient carrying a germline frameshift mutation and hence was diagnosed with congenital central hypoventilation syndrome. He came to medical attention after the mutation was identified in his daughter who presented with hypoventilation and a neuroblastoma. Although mutations are usually associated with a phenotype of congenital hypoventilation, severe autonomic dysfunction and neural crest tumors, our patient had no complaints at the time of presentation.

View Article and Find Full Text PDF

Background: In genome-wide screening studies for de novo mutations underlying autism and intellectual disability, mutations in the ADNP gene are consistently reported among the most frequent. ADNP mutations have been identified in children with autism spectrum disorder comorbid with intellectual disability, distinctive facial features, and deficits in multiple organ systems. However, a comprehensive clinical description of the Helsmoortel-Van der Aa syndrome is lacking.

View Article and Find Full Text PDF

In many children with cancer and characteristics suggestive of a genetic predisposition syndrome, the genetic cause is still unknown. We studied the yield of pathogenic mutations by applying whole-exome sequencing on a selected cohort of children with cancer. To identify mutations in known and novel cancer-predisposing genes, we performed trio-based whole-exome sequencing on germline DNA of 40 selected children and their parents.

View Article and Find Full Text PDF

Yin and yang 1 (YY1) is a well-known zinc-finger transcription factor with crucial roles in normal development and malignancy. YY1 acts both as a repressor and as an activator of gene expression. We have identified 23 individuals with de novo mutations or deletions of YY1 and phenotypic features that define a syndrome of cognitive impairment, behavioral alterations, intrauterine growth restriction, feeding problems, and various congenital malformations.

View Article and Find Full Text PDF

Next-generation sequencing led to the identification of many potential novel disease genes. The presence of mutations in the same gene in multiple unrelated patients is, however, a priori insufficient to establish that these genes are truly involved in the respective disease. Here, we show how phenotype information can be incorporated within statistical approaches to provide additional evidence for the causality of mutations.

View Article and Find Full Text PDF