PLoS One
September 2013
Introduction: Recent studies have demonstrated that inactivated seasonal influenza vaccines (IIV) may elicit production of heterosubtypic antibodies, which can neutralize avian H5N1 virus in a small proportion of subjects. We hypothesized that prime boost regimens of live and inactivated trivalent seasonal influenza vaccines (LAIV and IIV) would enhance production of heterosubtypic immunity and provide evidence of cross-protection against other influenza viruses.
Methods: In an open-label study, 26 adult volunteers were randomized to receive one of four vaccine regimens containing two doses of 2009-10 seasonal influenza vaccines administered 8 (±1) weeks apart: 2 doses of LAIV; 2 doses of IIV; LAIV then IIV; IIV then LAIV.
Gaining insight in likely disease emergence scenarios is critical to preventing such events from happening. Recent focus has been on emerging zoonoses and on identifying common patterns and drivers of emerging diseases. However, no overarching framework exists to integrate knowledge on all emerging infectious disease events.
View Article and Find Full Text PDFInformation on the immune response against H5N1 within the lung is lacking. Here we describe the sustained antiviral immune responses, as indicated by the expression of MxA protein and IFN-alpha mRNA, in autopsy lung tissue from an H5N1-infected patient. H5N1 infection of primary bronchial/tracheal epithelial cells and lung microvascular endothelial cells induced IP-10, and also up-regulated the retinoic acid-inducible gene-I (RIG-I).
View Article and Find Full Text PDFBackground: Burkholderia pseudomallei (Bp) is a category B biothreat organism that causes a potentially fatal disease in humans and animals, namely melioidosis. Burkholderia thailandensis (Bt) is another naturally occurring species that is very closely related to Bp. However, despite this closely related genotype, Bt is considered avirulent as it does not cause the disease.
View Article and Find Full Text PDFDendritic cells (DCs) are essential in regulating adaptive immunity. DC-SIGN (DC-specific ICAM-grabbing nonintegrin) is a C-type lectin receptor that is expressed mainly by DCs. Accumulating evidence supports that certain pathogens target DC-SIGN to escape host immunity.
View Article and Find Full Text PDFAntigen presenting cells (APCs), especially dendritic cells (DCs), play a crucial role in immune responses against infections by sensing microbial invasion through Toll-like receptors (TLRs). In this regard, TLR ligands are attractive candidates for use in humans and animal models as vaccine adjuvants. So far, no studies have been performed on TLR expression in non-human primates such as rhesus macaques.
View Article and Find Full Text PDFLeptospirosis is a global zoonotic disease, caused by pathogenic Leptospira species including Leptospira interrogans, that causes public health and livestock problems. Pathogenesis, immune response and cellular receptors for Leptospira are not well understood. Interaction of dendritic cells (DCs) with L.
View Article and Find Full Text PDFThere is worldwide concern that the avian influenza H5N1 virus, with a mortality rate of >50%, might cause the next influenza pandemic. Unlike most other influenza infections, H5N1 infection causes a systemic disease. The underlying mechanisms for this effect are still unclear.
View Article and Find Full Text PDFIn schistosomiasis, a parasitic disease caused by helminths, the parasite eggs induce a T helper 2 cell (T(H)2) response in the host. Here, the specific role of human monocyte-derived dendritic cells (DCs) in initiation and polarization of the egg-specific T cell responses was examined. We demonstrate that immature DCs (iDCs) pulsed with schistosome soluble egg antigens (SEA) do not show an increase in expression of co-stimulatory molecules or cytokines, indicating that no conventional maturation was induced.
View Article and Find Full Text PDFNeisseria meningitidis lipopolysaccharide (LPS) has been identified as a major determinant of dendritic cell (DC) function. Here we report that one of a series of meningococcal mutants with defined truncations in the lacto-N-neotetraose outer core of the LPS exhibited unique strong adhesion and internalization properties towards DC. These properties were mediated by interaction of the GlcNAc(beta1-3)-Gal(beta1-4)-Glc-R oligosaccharide outer core of lgtB LPS with the dendritic-cell-specific ICAM-3 grabbing non-integrin (DC-SIGN) lectin receptor.
View Article and Find Full Text PDFBackground: Lactobacilli are probiotic bacteria that are frequently tested in the management of allergic diseases or gastroenteritis. It is hypothesized that these probiotics have immunoregulatory properties and promote mucosal tolerance, which is in part mediated by regulatory T cells (Treg cells). On the basis of pathogenic or tissue-specific priming, dendritic cells (DC) acquire different T cell-instructive signals and drive the differentiation of naive T H cells into either T H 1, T H 2, or regulatory effector T cells.
View Article and Find Full Text PDFThe human gastric pathogen Helicobacter pylori spontaneously switches lipopolysaccharide (LPS) Lewis (Le) antigens on and off (phase-variable expression), but the biological significance of this is unclear. Here, we report that Le+ H. pylori variants are able to bind to the C-type lectin DC-SIGN and present on gastric dendritic cells (DCs), and demonstrate that this interaction blocks T helper cell (Th)1 development.
View Article and Find Full Text PDFDendritic cells (DCs) play a central role in balancing immune responses between tolerance induction and immune activation. Under steady state conditions DCs continuously sample antigens, leading to tolerance, whereas inflammatory conditions activate DCs, inducing immune activation. DCs express C-type lectin receptors (CLRs) for antigen capture and presentation, whereas Toll-like receptors (TLRs) are involved in pathogen recognition and DC activation.
View Article and Find Full Text PDFIn the paracortex of lymph nodes, cellular immune responses are generated against antigens captured in peripheral tissues by dendritic cells (DCs). DC-SIGN (dendritic cell-specific ICAM-3 grabbing nonintegrin), a C-type lectin exclusively expressed by DCs, functions as an antigen receptor as well as an adhesion receptor. A functional homologue of DC-SIGN, L-SIGN (liver/lymph node-SIGN, also called DC-SIGN-related), is expressed by liver sinus endothelial cells.
View Article and Find Full Text PDFDendritic cells (DCs) are highly efficient antigen-presenting cells (APCs) that collect antigen in body tissues and transport them to draining lymph nodes. Antigenic peptides are loaded onto major histocompatibility complex (MHC) molecules for presentation to naive T cells, resulting in the induction of cellular and humoral immune responses. DCs take up antigen through phagocytosis, pinocytosis, and endocytosis via different groups of receptor families, such as Fc receptors for antigen-antibody complexes, C-type lectin receptors (CLRs) for glycoproteins, and pattern recognition receptors, such as Toll-like receptors (TLRs), for microbial antigens.
View Article and Find Full Text PDFThe capacity of dendritic cells to initiate T cell responses is related to their ability to redistribute MHC class II molecules from the intracellular MHC class II compartments to the cell surface. This redistribution occurs during dendritic cell development as they are converted from an antigen capturing, immature dendritic cell into an MHC class II-peptide presenting mature dendritic cell. During this maturation, antigen uptake and processing are down-regulated and peptide-loaded class II complexes become expressed in a stable manner on the cell surface.
View Article and Find Full Text PDFDendritic cells (DCs) detect different pathogens and elicit tailored anti-microbial immune responses. They express C-type lectins that recognise carbohydrate profiles on microorganisms, resulting in internalisation, processing and presentation. Intracellular sequences of distinct DC-specific lectins point to differences in intracellular routing that influence antigen presentation.
View Article and Find Full Text PDFThe dendritic cell (DC)-specific molecule DC-SIGN is a receptor for the HIV-1 envelope glycoprotein gp120 and is essential for the dissemination of HIV-1. DC-SIGN is expressed by DCs, both monocyte-derived DCs and DCs in several tissues, including mucosa and lymph nodes. To identify a DC-SIGN(+) DC in blood that may be involved in HIV-1 infection through blood, we have analyzed the expression of DC-SIGN in human blood cells.
View Article and Find Full Text PDFDendritic cells (DC) are present in essentially every tissue where they operate at the interface of innate and acquired immunity by recognizing pathogens and presenting pathogen-derived peptides to T cells. It is becoming clear that not all C-type lectins on DC serve as antigen receptors recognizing pathogens through carbohydrate structures. The C-type lectin DC-SIGN is unique in that it regulates adhesion processes, such as DC trafficking and T-cell synapse formation, as well as antigen capture.
View Article and Find Full Text PDFDendritic cells (DCs) capture Ags or viruses in peripheral tissue to transport them to lymphoid organs to induce cellular T cell responses. Recently, a DC-specific C-type lectin was identified, DC-specific ICAM-grabbing non-integrin (DC-SIGN), that functions as cell adhesion receptor mediating both DC migration and T cell activation. DC-SIGN also functions as an HIV-1R that captures HIVgp120 and facilitates DC-induced HIV transmission of T cells.
View Article and Find Full Text PDFDC-SIGN, a dendritic cell (DC)-specific lectin, mediates clustering of DCs with T lymphocytes, a crucial event in the initiation of immune responses. DC-SIGN also binds HIV envelope glycoproteins, allowing efficient virus capture by DCs. We show here that DC-SIGN surface levels are upregulated in HIV-1-infected DCs.
View Article and Find Full Text PDF