Over the years, the performance of the liposomal formulations of temoporfin, Foslip® and Fospeg®, was investigated in a broad array of cell-based assays and preclinical animal models. So far, little attention has been paid to the influence of drug release and liposomal stability on the plasma concentration-time profile. The drug release is a key attribute which impacts product quality and the in vivo efficacy of nanocarrier formulations.
View Article and Find Full Text PDFPhotodiagnosis Photodyn Ther
March 2020
Background: Singlet oxygen is known to be the main mediator of the photodynamic effect. The kinetics of its generation and deactivation allows for insights in the microenvironment and efficacy of the photodynamic effect. Therefore, it is highly desirable to perform direct and time resolved measurements of singlet molecular oxygen (O) as well as data analysis during the therapy.
View Article and Find Full Text PDFPPARγ is a pharmacological target in inflammatory and metabolic diseases. Upon agonistic treatment or following antagonism, binding of co-factors is altered, which consequently affects PPARγ-dependent transactivation as well as its DNA-independent properties. Therefore, establishing techniques to characterize these interactions is an important issue in living cells.
View Article and Find Full Text PDFMosquitoes are carriers of dangerous infectious disease pathogens all over the world. Owing to travelling and global warming, tropical disease-carrying species such as Aedes, Anopheles and Culex spread beyond tropical and subtropical zones, even to Europe. The aim of this study is to investigate the potential of photodynamic agents to combat mosquito larvae.
View Article and Find Full Text PDFFoscan®, a formulation comprising temoporfin dissolved in a mixture of ethanol and propylene glycol, has been approved in Europe for palliative photodynamic therapy of squamous cell carcinoma of the head and neck. During clinical and preclinical studies it was observed that considering the administration route, the drug presents a rather atypical plasma profile as plasma concentration peaks delayed. Possible explanations, as for example the formation of a drug depot or aggregation after intravenous administration, are discussed in current literature.
View Article and Find Full Text PDFPhotodiagnosis Photodyn Ther
December 2018
Onychomycosis is a fungal nail infection caused primarily by the dermatophytes Trichophyton rubrum and Trichophyton interdigitale or, less frequently, by molds like Aspergillus spp. and Scopulariopsis brevicaulis. Photodynamic treatment of onychomycosis is considered a promising future therapy to overcome the frequent failure of currently used antifungals.
View Article and Find Full Text PDFPolymer membranes are powerful filtration tools in medicine and water treatment. Their efficiency and operational lifetime is limited by biofouling caused by microorganisms. This study describes the development of photodynamical active antimicrobial polymer membranes in a one-pot functionalization step using a well-known photosensitizer (PS).
View Article and Find Full Text PDFPhotodiagnosis Photodyn Ther
September 2018
Background: Direct singlet molecular oxygen detection is known to be a valuable tool for understanding photodynamic action. It could become useful for optimizing illumination schedules in photodynamic therapy. The method of time resolved singlet molecular oxygen luminescence detection can give insights into generation of singlet oxygen and its interaction with the environment and therefore possibly allows monitoring the treatments efficacy.
View Article and Find Full Text PDFJ Photochem Photobiol B
January 2018
Photodynamic inactivation (PDI) of bacteria may play a major role in facing the challenge of the ever expanding antibiotic resistances. Here we report about the direct correlation of singlet oxygen luminescence kinetics and phototoxicity in E. coli cell suspension under PDI using the widely applied cationic photosensitizer TMPyP.
View Article and Find Full Text PDFPointsource photodynamic therapy (PSPDT) is a newly developed fiber optic method aimed at the delivery of photosensitizer, light and oxygen to a diseased site. Because of a need for developing photosensitizers with desirable properties for PSPDT, we have carried out a synthetic, photophysical and phototoxicity study on a series of PEGylated sensitizers. Chlorin and pheophorbide sensitizers were readily amenable to our synthetic PEGylation strategy to reach triPEG and hexaPEG galloyl pheophorbides and mono-, di-, triPEG chlorins.
View Article and Find Full Text PDFThis study was performed as a proof of concept for singlet oxygen generating facade paint as an alternative to conventional biocide containing facade paint for the prevention of biofilm growth on outdoor walls. Biofilms on outdoor walls cause esthetic problems and economic damage. Therefore facade paints often contain biocides.
View Article and Find Full Text PDFJ Photochem Photobiol B
April 2014
The photodynamic effect, originally used in photodynamic therapy (PDT) for the treatment of different diseases, e.g. of cancer, has recently been introduced for the inactivation of bacteria.
View Article and Find Full Text PDFThe photosensitizing efficiency of human serum albumin (HSA) nanoparticles loaded with the photosensitizers meta-tetra(hydroxy-phenyl)-chlorin (mTHPC) and meta-tetra(hydroxy-phenyl)-porphyrin (mTHPP) was investigated in vitro. The endocytotic intracellular uptake, and the time dependent drug release caused by nanoparticle decomposition of the PS loaded HSA nanoparticles were studied on Jurkat cells in suspension. The photoxicity as well as the intracellular singlet oxygen ((1)O(2)) generation were investigated in dependence on the incubation time.
View Article and Find Full Text PDFPhotodynamic therapy (PDT) is a promising option in the treatment of cancer. Efficient photosensitizers are available but many of them have insufficient physico-chemical properties for parenteral application. We have established nanoparticles consisting of human serum albumin (HSA) as a drug carrier system for 5,10,15,20-tetrakis(m-hydroxyphenyl)porphyrine (mTHPP) and 5,10,15,20-tertrakis(m-hydroxyphenyl)chlorin (mTHPC), two well-known photosensitizers.
View Article and Find Full Text PDFJ Photochem Photobiol B
March 2010
The kinetics of chemical singlet oxygen quencher consumption inside living cells during low dose illumination was revealed via time resolved singlet oxygen luminescence detection. Deviations of the measured data from the common theoretical model for (1)O(2) kinetics forced the authors to consider a one-dimensional diffusion model for description of the kinetics of singlet oxygen generated by membrane localized photosensitizers. Our observations reconcile seemingly contradictory reports presenting different values for the efficiency of singlet oxygen interaction with cells.
View Article and Find Full Text PDFIn this work two types of pheophorbide-HSA (Pheo-HSA) nanoparticles, PHSA40 and PHSA100, were prepared and their photophysical and photosensitizing properties were investigated. Due to intramolecular interactions the singlet oxygen quantum yield of PHSA40 and PHSA100 is very low (less than 0.1).
View Article and Find Full Text PDF