Understanding the behavioral and neural dynamics of social interactions is a goal of contemporary neuroscience. Many machine learning methods have emerged in recent years to make sense of complex video and neurophysiological data that result from these experiments. Less focus has been placed on understanding how animals process acoustic information, including social vocalizations.
View Article and Find Full Text PDFSocial behaviors often consist of a motivational phase followed by action. Here we show that neurons in the ventromedial hypothalamus ventrolateral area (VMHvl) of mice encode the temporal sequence of aggressive motivation to action. The VMHvl receives local inhibitory input (VMHvl shell) and long-range input from the medial preoptic area (MPO) with functional coupling to neurons with specific temporal profiles.
View Article and Find Full Text PDFAnimals learn the value of foods based on their postingestive effects and thereby develop aversions to foods that are toxic and preferences to those that are nutritious. However, it remains unclear how the brain is able to assign credit to flavors experienced during a meal with postingestive feedback signals that can arise after a substantial delay. Here, we reveal an unexpected role for postingestive reactivation of neural flavor representations in this temporal credit assignment process.
View Article and Find Full Text PDFChronic stress can have lasting adverse consequences in some individuals, yet others are resilient to the same stressor. Susceptible and resilient individuals exhibit differences in the intrinsic properties of mesolimbic dopamine (DA) neurons after the stressful experience is over. However, the causal links between DA, behaviour during stress and individual differences in resilience are unknown.
View Article and Find Full Text PDFThe desire to understand how the brain generates and patterns behavior has driven rapid methodological innovation in tools to quantify natural animal behavior. While advances in deep learning and computer vision have enabled markerless pose estimation in individual animals, extending these to multiple animals presents unique challenges for studies of social behaviors or animals in their natural environments. Here we present Social LEAP Estimates Animal Poses (SLEAP), a machine learning system for multi-animal pose tracking.
View Article and Find Full Text PDFWhile aggression is often conceptualized as a highly stereotyped, innate behavior, individuals within a species exhibit a surprising amount of variability in the frequency, intensity, and targets of their aggression. While differences in genetics are a source of some of this variation across individuals (estimates place the heritability of behavior at around 25-30%), a critical driver of variability is previous life experience. A wide variety of social experiences, including sexual, parental, and housing experiences can facilitate "persistent" aggressive states, suggesting that these experiences engage a common set of synaptic and molecular mechanisms that act on dedicated neural circuits for aggression.
View Article and Find Full Text PDFCold Spring Harb Perspect Biol
May 2022
Sex differences are commonly observed in behaviors that are closely linked to adaptive function, but sex differences can also be observed in behavioral "building blocks" such as locomotor activity and reward processing. Modern neuroscientific inquiry, in pursuit of generalizable principles of functioning across sexes, has often ignored these more subtle sex differences in behavioral building blocks that may result from differences in these behavioral building blocks. A frequent assumption is that there is a default (often male) way to perform a behavior.
View Article and Find Full Text PDFAlthough the ventromedial hypothalamus ventrolateral area (VMHvl) is now well established as a critical locus for the generation of conspecific aggression, its role is complex, with neurons responding during multiple phases of social interactions with both males and females. It has been previously unclear how the brain uses this complex multidimensional signal and coordinates a discrete action: the attack. Here, we find a hypothalamic-midbrain circuit that represents hierarchically organized social signals during aggression.
View Article and Find Full Text PDFAggression is a costly behavior, sometimes with severe consequences including death. Yet aggression is prevalent across animal species ranging from insects to humans, demonstrating its essential role in the survival of individuals and groups. The question of how the brain decides when to generate this costly behavior has intrigued neuroscientists for over a century and has led to the identification of relevant neural substrates.
View Article and Find Full Text PDFLittle is known about the internal circuitry of the primate lateral intraparietal area (LIP). During two versions of a delayed-saccade task, we found radically different network dynamics beneath similar population average firing patterns. When neurons are not influenced by stimuli outside their receptive fields (RFs), dynamics of the high-dimensional LIP network during slowly varying activity lie predominantly in one multi-neuronal dimension, as described previously.
View Article and Find Full Text PDFIn many vertebrate species, certain individuals will seek out opportunities for aggression, even in the absence of threat-provoking cues. Although several brain areas have been implicated in the generation of attack in response to social threat, little is known about the neural mechanisms that promote self-initiated or 'voluntary' aggression-seeking when no threat is present. To explore this directly, we utilized an aggression-seeking task in which male mice self-initiated aggression trials to gain brief and repeated access to a weaker male that they could attack.
View Article and Find Full Text PDFFront Syst Neurosci
October 2014
The hypothalamus was first implicated in the classic "fight or flight" response nearly a century ago, and since then, many important strides have been made in understanding both the circuitry and the neural dynamics underlying the generation of these behaviors. In this review, we will focus on the role of the hypothalamus in aggression, paying particular attention to recent advances in the field that have allowed for functional identification of relevant hypothalamic subnuclei. Recent progress in this field has been aided by the development of new techniques for functional manipulation including optogenetics and pharmacogenetics, as well as advances in technology used for chronic in vivo recordings during complex social behaviors.
View Article and Find Full Text PDFThe ventromedial hypothalamus, ventrolateral area (VMHvl) was identified recently as a critical locus for inter-male aggression. Optogenetic stimulation of VMHvl in male mice evokes attack toward conspecifics and inactivation of the region inhibits natural aggression, yet very little is known about its underlying neural activity. To understand its role in promoting aggression, we recorded and analyzed neural activity in the VMHvl in response to a wide range of social and nonsocial stimuli.
View Article and Find Full Text PDFThe lateral intraparietal area (LIP) in the macaque contains a priority-based representation of the visual scene. We previously showed that the mean spike rate of LIP neurons is strongly influenced by spatially wide-ranging surround suppression in a manner that effectively sharpens the priority map. Reducing response variability can also improve the precision of LIP's priority map.
View Article and Find Full Text PDFIn the visual world, stimuli compete with each other for allocation of the brain's limited processing resources. Computational models routinely invoke wide-ranging mutually suppressive interactions in spatial priority maps to implement active competition for attentional and saccadic allocation, but such suppressive interactions have not been physiologically described, and their existence is controversial. Much evidence implicates the lateral intraparietal area as a candidate priority map in the macaque (Macaca mulatta).
View Article and Find Full Text PDF