Mild traumatic brain injury (mTBI) is common in the United States, accounting for as many as 75-80% of all TBIs. It is recognized as a significant public health concern, but there are ongoing controversies regarding the etiology of persistent symptoms post-mTBI. This constellation of nonspecific symptoms is referred to as postconcussive syndrome (PCS).
View Article and Find Full Text PDFPost-traumatic stress disorder (PTSD) is a leading cause of sustained impairment, distress, and poor quality of life in military personnel, veterans, and civilians. Indirect functional neuroimaging studies using PET or fMRI with fear-related stimuli support a PTSD neurocircuitry model that includes amygdala, hippocampus, and ventromedial prefrontal cortex (vmPFC). However, it is not clear if this model can fully account for PTSD abnormalities detected directly by electromagnetic-based source imaging techniques in resting-state.
View Article and Find Full Text PDFTraumatic brain injury (TBI) is a leading cause of sustained impairment in military and civilian populations. However, mild TBI (mTBI) can be difficult to detect using conventional MRI or CT. Injured brain tissues in mTBI patients generate abnormal slow-waves (1-4 Hz) that can be measured and localized by resting-state magnetoencephalography (MEG).
View Article and Find Full Text PDFThe present study developed a fast MEG source imaging technique based on Fast Vector-based Spatio-Temporal Analysis using a L1-minimum-norm (Fast-VESTAL) and then used the method to obtain the source amplitude images of resting-state magnetoencephalography (MEG) signals for different frequency bands. The Fast-VESTAL technique consists of two steps. First, L1-minimum-norm MEG source images were obtained for the dominant spatial modes of sensor-waveform covariance matrix.
View Article and Find Full Text PDFTraumatic brain injury (TBI) is a leading cause of sustained impairment in military and civilian populations. However, mild (and some moderate) TBI can be difficult to diagnose because the injuries are often not detectable on conventional MRI or CT. Injured brain tissues in TBI patients generate abnormal low-frequency magnetic activity (ALFMA, peaked at 1-4 Hz) that can be measured and localized by magnetoencephalography (MEG).
View Article and Find Full Text PDFThe "Dual-Core Beamformer" (DCBF) is a new lead-field based MEG inverse-modeling technique designed for localizing highly correlated networks from noisy MEG data. Conventional beamformer techniques are successful in localizing neuronal sources that are uncorrelated under poor signal-to-noise ratio (SNR) conditions. However, they fail to reconstruct multiple highly correlated sources.
View Article and Find Full Text PDFTraumatic brain injury (TBI) is a leading cause of sustained impairment in military and civilian populations. However, mild (and some moderate) TBI can be difficult to diagnose due to lack of obvious external injuries and because the injuries are often not visible on conventional acute MRI or CT. Injured brain tissues in TBI patients generate pathological low-frequency neuronal magnetic signal (delta waves 1-4 Hz) that can be measured and localized by magnetoencephalography (MEG).
View Article and Find Full Text PDF