To study the effects of slightly elevated temperature and ozone (O3) on leaf structural characteristics of silver birch (Betula pendula Roth), saplings of four clonal genotypes of this species were exposed to elevated temperature (ambient air temperature +0.8-1.0 °C) and elevated O3 (1.
View Article and Find Full Text PDFTropospheric ozone (O3) is an important secondary air pollutant formed as a result of photochemical reactions between primary pollutants, such as nitrogen oxides (NOx), and volatile organic compounds (VOCs). O3 concentrations in the lower atmosphere (troposphere) are predicted to continue increasing as a result of anthropogenic activity, which will impact strongly on wild and cultivated plants. O3 affects photosynthesis and induces the development of visible foliar injuries, which are the result of genetically controlled programmed cell death.
View Article and Find Full Text PDFMycorrhizas are mostly beneficial to host plant growth and survival, e.g., due to improved water and nutrient uptake and enhanced pathogen protection, but also a significant amount of host plant carbon is allocated below-ground to support the mycorrhizal growth.
View Article and Find Full Text PDFBiogenic volatile organic compounds (VOCs) serve as signals mediating information between plants and their higher trophic level beneficials, such as parasitoids and predators of herbivores. We recently demonstrated with oilseed rape ( L.) plants, herbivorous diamond-back moth ( L.
View Article and Find Full Text PDFNorthern forest trees are challenged to adapt to changing climate, including global warming and increasing tropospheric ozone (O(3)) concentrations. Both elevated O(3) and temperature can cause significant changes in volatile organic compound (VOC) emissions as well as in leaf anatomy that can be related to adaptation or increased stress tolerance, or are signs of damage. Impacts of moderately elevated O(3) (1.
View Article and Find Full Text PDFDoes transgenically incorporated insect resistance affect constitutive and herbivore-inducible terpenoid emissions and multitrophic communication under elevated atmospheric CO(2) or ozone (O(3))? This study aimed to clarify the possible interactions between allocation to direct defences (Bacillus thuringiensis (Bt) toxin production) and that to endogenous indirect defences under future climatic conditions. Terpenoid emissions were measured from vegetative-stage non-Bt and Bt Brassica napus grown in growth chambers under control or doubled CO(2), and control (filtered air) or 100 ppb O(3). The olfactometric orientation of Cotesia vestalis, an endoparasitoid of the herbivorous diamondback moth (Plutella xylostella), was assessed under the corresponding CO(2) and O(3) concentrations.
View Article and Find Full Text PDFWe tested whether the ectomycorrhizal (ECM) infection level of roots of silver birch (Betula pendula) affects performance of above-ground insect herbivores by increasing available plant biomass, by enhancing availability of nutrients, or by modifying concentration of defense compounds, i.e., phenolics, in birch foliage.
View Article and Find Full Text PDFSustained cultivation of Bacillus thuringiensis (Bt) transgenic crops requires stable transgene expression under variable abiotic conditions. We studied the interactions of Bt toxin production and chronic ozone exposure in Bt cry1Ac-transgenic oilseed rape and found that the insect resistance trait is robust under ozone elevations. Bt Cry1Ac concentrations were higher in the leaves of Bt oilseed rape grown under elevated ozone compared to control treatment, measured either per leaf fresh weight or per total soluble protein of leaves.
View Article and Find Full Text PDFWe tested whether changes in long-term nutrient availability would affect the xylem quality and characteristics of Scots pine trees as a food source for the larvae of the xylophagous wood borer Hylotrupes bajulus L. (Cerambycidae). We looked for an effect of host plant growth and xylem structural traits on H.
View Article and Find Full Text PDFThe emission of inducible volatile organic compounds (VOCs), i.e., inducible terpenes, and green leaf volatiles (GLVs), is a common response of plants to herbivore attack.
View Article and Find Full Text PDFGlucosinolates are plant secondary compounds involved in direct chemical defence by cruciferous plants against herbivores. The glucosinolate profile can be affected by abiotic and biotic environmental stimuli. We studied changes in glucosinolate patterns in leaves of non-transgenic oilseed rape (Brassica napus ssp.
View Article and Find Full Text PDFHuman urine was used as a fertilizer in cabbage cultivation and compared with industrial fertilizer and nonfertilizer treatments. Urine achieved equal fertilizer value to industrial fertilizer when both were used at a dose of 180 kg N/ha. Growth, biomass, and levels of chloride were slightly higher in urine-fertilized cabbage than with industrial-fertilized cabbage but clearly differed from nonfertilized.
View Article and Find Full Text PDFInducible terpenes and lipoxygenase pathway products, e.g., green-leaf volatiles (GLVs), are emitted by plants in response to herbivory.
View Article and Find Full Text PDFThe effect of methyl jasmonate (MJ) spraying on the chemistry of Brassica plants was investigated. Glucosinolates (GLS) in the leaves, stems, and roots of laboratory-grown oilseed rape (Brassica rapa subsp. oleifera cv.
View Article and Find Full Text PDFSeveral plant species defend themselves indirectly from herbivores by producing herbivore-induced volatile compounds that attract the natural enemies of herbivores. Here we tested the effects of elevated atmospheric CO(2) (720 micromol mol(-1)) concentration on this indirect defense, physiological properties, and constitutive and induced emissions of white cabbage (Brassica oleracea ssp. capitata, cvs Lennox and Rinda).
View Article and Find Full Text PDFWe evaluated the similarities between ozone-induced and mite-induced emission of volatile organic compounds (VOCs) from lima beans, and tested the response of the natural enemies of herbivores to these emissions using trophic system of two-spotted spider mites and predatory mites. The acute ozone-exposure and spider mite-infestation induced the emission of two homoterpenes, (E)-4,8-dimethyl-1,3,7-nonatriene and (E,E)-4,8,12-trimethyl-1,3,7,11-tridecatetraene, and (Z)-3-hexenyl acetate. Only plants with spider mite-infestation emitted the monoterpene (E)-beta-ocimene.
View Article and Find Full Text PDFCabbage, Brassica oleracea subsp. capitata (cv. Lennox and Rinda), and oilseed rape, Brassica rapa subsp.
View Article and Find Full Text PDF