Publications by authors named "Anne-Marie Marini"

The Escherichia coli AmtB protein is member of the ubiquitous Amt family of ammonium transporters. Using a variety of [14C]methylammonium-uptake assays in wild-type E. coli, together with amtB and glutamine synthetase (glnA) mutants, we have shown that the filtration method traditionally used to measure [14C]methylammonium uptake actually measures intracellular accumulation of methylglutamine and that the kinetic data deduced from such experiments refer to the activity of glutamine synthetase and not to AmtB.

View Article and Find Full Text PDF

Ammonium is a primary source of nitrogen for plants. In legume plants ammonium can also be obtained by symbiotic nitrogen fixation, and NH(4)(+) is also a regulator of early and late symbiotic interaction steps. Ammonium transporters are likely to play important roles in the control of nodule formation as well as in nitrogen assimilation.

View Article and Find Full Text PDF

Ubiquitination of the yeast Gap1 permease at the plasma membrane triggers its endocytosis followed by targeting to the vacuolar lumen for degradation. We previously identified Bro1 as a protein essential to this down-regulation. In this study, we show that Bro1 is essential neither to ubiquitination nor to the early steps of Gap1 endocytosis.

View Article and Find Full Text PDF

In most organisms, high affinity ammonium uptake is catalyzed by members of the ammonium transporter family (AMT/MEP/Rh). A single point mutation (G458D) in the cytosolic C terminus of the plasma membrane transporter LeAMT1;1 from tomato leads to loss of function, although mutant and wild type proteins show similar localization when expressed in yeast or plant protoplasts. Co-expression of LeAMT1;1 and mutant in Xenopus oocytes inhibited ammonium transport in a dominant negative manner, suggesting homo-oligomerization.

View Article and Find Full Text PDF

Most terrestrial plants live in mutualistic symbiosis with root-infecting mycorrhizal fungi. This association requires a molecular dialogue between the two partners. However, the nature of the chemical signals that induce hyphal differentiation are not well characterized and the mechanisms for signal reception are still unknown.

View Article and Find Full Text PDF

External hyphae, which play a key role in nitrogen nutrition of trees, are considered as the absorbing structures of the ectomycorrhizal symbiosis. Here, we have cloned and characterized Hebeloma cylindrosporum AMT1, GLNA and GDHA genes, which encode a third ammonium transporter, a glutamine synthetase and an NADP-dependent glutamate dehydrogenase respectively. Amt1 can fully restore the pseudohyphal growth defect of a Saccharomyces cerevisiae mep2 mutant, and this is the first evidence that a heterologous member of the Mep/Amt family complements this dimorphic change defect.

View Article and Find Full Text PDF

The membrane traffic and stability of the general amino acid permease Gap1 of Saccharomyces cerevisiae are under nitrogen control. Addition of a preferential nitrogen source such as ammonium to cells growing on a poor nitrogen source induces internalization of the permease and its subsequent degradation in the vacuole. This down-regulation requires ubiquitination of Gap1 through a process involving ubiquitin ligase Npi1/Rsp5, ubiquitin hydrolase Npi2/Doa4, and Bul1/2, two Npi1/Rsp5 interacting proteins.

View Article and Find Full Text PDF