Publications by authors named "Anne-Marie M Oswald"

Inhibitory microcircuits play an essential role in regulating cortical responses to sensory stimuli. Interneurons that inhibit dendritic or somatic integration act as gatekeepers for neural activity, synaptic plasticity, and the formation of sensory representations. Conversely, interneurons that selectively inhibit other interneurons can open gates through disinhibition.

View Article and Find Full Text PDF

The lateral parabrachial nucleus (lPBN) is a major target of spinal projection neurons conveying nociceptive input into supraspinal structures. However, the functional role of distinct lPBN efferents in diverse nocifensive responses have remained largely uncharacterized. Here we show that that the lPBN is required for escape behaviors and aversive learning to noxious stimulation.

View Article and Find Full Text PDF

The spatial representation of stimuli in sensory neocortices provides a scaffold for elucidating circuit mechanisms underlying sensory processing. However, the anterior piriform cortex (APC) lacks topology for odor identity as well as afferent and intracortical excitation. Consequently, olfactory processing is considered homogenous along the APC rostral-caudal (RC) axis.

View Article and Find Full Text PDF

Inhibitory circuitry plays an integral role in cortical network activity. The development of transgenic mouse lines targeting unique interneuron classes has significantly advanced our understanding of the functional roles of specific inhibitory circuits in neocortical sensory processing. In contrast, considerably less is known about the circuitry and function of interneuron classes in piriform cortex, a paleocortex responsible for olfactory processing.

View Article and Find Full Text PDF

Throughout the brain, the recruitment of feedforward and recurrent inhibition shapes neural responses. However, disentangling the relative contributions of these often-overlapping cortical circuits is challenging. The piriform cortex provides an ideal system to address this issue because the interneurons responsible for feedforward and recurrent inhibition are anatomically segregated in layer (L) 1 and L2/3 respectively.

View Article and Find Full Text PDF

Understanding how neural and behavioral timescales interact to influence cortical activity and stimulus coding is an important issue in sensory neuroscience. In air-breathing animals, voluntary changes in respiratory frequency alter the temporal patterning olfactory input. In the olfactory bulb, these behavioral timescales are reflected in the temporal properties of mitral/tufted (M/T) cell spike trains.

View Article and Find Full Text PDF

Stimulus properties, attention, and behavioral context influence correlations between the spike times produced by a pair of neurons. However, the biophysical mechanisms that modulate these correlations are poorly understood. With a combined theoretical and experimental approach, we show that the rate of balanced excitatory and inhibitory synaptic input modulates the magnitude and timescale of pairwise spike train correlation.

View Article and Find Full Text PDF

The time course of inhibition plays an important role in cortical sensitivity, tuning, and temporal response properties. We investigated the development of L2/3 inhibitory circuitry between fast-spiking (FS) interneurons and pyramidal cells (PCs) in auditory thalamocortical slices from mice between postnatal day 10 (P10) and P29. We found that the maturation of the intrinsic and synaptic properties of both FS cells and their connected PCs influence the timescales of inhibition.

View Article and Find Full Text PDF

The interplay between inhibition and excitation is at the core of cortical network activity. In many cortices, including auditory cortex (ACx), interactions between excitatory and inhibitory neurons generate synchronous network gamma oscillations (30-70 Hz). Here, we show that differences in the connection patterns and synaptic properties of excitatory-inhibitory microcircuits permit the spatial extent of network inputs to modulate the magnitude of gamma oscillations.

View Article and Find Full Text PDF

We investigated the development of L2/3 pyramidal cell (PC) circuitry in juvenile mice from postnatal day 10 (P10) to P29. Using whole cell recordings in an in vitro thalamocortical slice preparation, we examined the connection architecture and intrinsic and synaptic properties of PCs. The excitatory connections between PCs were highly localized: the probability of connection between PCs declined with intersomatic distance from 0.

View Article and Find Full Text PDF

The rich temporal structure of neural spike trains provides multiple dimensions to code dynamic stimuli. Popular examples are spike trains from sensory cells where bursts and isolated spikes can serve distinct coding roles. In contrast to analyses of neural coding, the cellular mechanics of burst mechanisms are typically elucidated from the neural response to static input.

View Article and Find Full Text PDF

Short interspike intervals such as those that occur during burst firing are hypothesized to be distinct features of the neural code. Although a number of correlations between the occurrence of burst events and aspects of the stimulus have been identified, the relationship between burst characteristics and information transfer is uncertain. Pyramidal cells in the electrosensory lobe of the weakly electric fish, Apteronotus leptorhynchus, respond to dynamic broadband electrosensory stimuli with bursts and isolated spikes.

View Article and Find Full Text PDF

In vivo voltage clamp recordings have provided new insights into the synaptic mechanisms that underlie processing in the primary auditory cortex. Of particular importance are the discoveries that excitatory and inhibitory inputs have similar frequency and intensity tuning, that excitation is followed by inhibition with a short delay, and that the duration of inhibition is briefer than expected. These findings challenge existing models of auditory processing in which broadly tuned lateral inhibition is used to limit excitatory receptive fields and suggest new mechanisms by which inhibition and short term plasticity shape neural responses.

View Article and Find Full Text PDF

Burst firing is commonly observed in many sensory systems and is proposed to transmit information reliably. Although a number of biophysical burst mechanisms have been identified, the relationship between burst dynamics and information transfer is uncertain. Electrosensory pyramidal cells have a well defined backpropagation-dependent burst mechanism.

View Article and Find Full Text PDF

Descending feedback is a common feature of sensory systems. Characterizing synaptic plasticity in feedback inputs is essential for delineating the role of feedback in sensory processing. In this study, we demonstrate that multiple interacting processes underlie the dynamics of synaptic potentiation in one such sensory feedback pathway.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionqcfil7bk8bqbi5h9stv097obia72snv2): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once