Publications by authors named "Anne-Marie Kuhn"

In atherosclerosis macrophages contribute to disease progression. After infiltrating atherosclerotic lesions they accumulate oxLDL (oxidized low density lipoproteins) and differentiate into foam cells. During this process inhibition of TLR4 (Toll-like receptor 4)-dependent IFNβ expression occurs.

View Article and Find Full Text PDF

NADPH oxidase activation in either RAW264.7 cells or peritoneal macrophages (PM) derived from PPARγ wild-type mice increased reactive oxygen species (ROS) formation, caused PPARγ activation, heme oxygenase-1 (HO-1) induction, and concomitant IFN-β expression. In macrophages transduced with a dominant negative (d/n) mutant of PPARγ (RAW264.

View Article and Find Full Text PDF

Rationale: Despite intensive research, sepsis displays the most prevalent cause of death on intensive care units. The hallmark of sepsis is an overshooting T-cell death that reduces host defense mechanisms and that is associated with poor patient survival. Previous in vitro studies revealed that the expression of the transcription factor peroxisome proliferator-activated receptor (PPAR) γ was increased in isolated T cells of patients with sepsis.

View Article and Find Full Text PDF

Inflammatory conditions and oxidative stress contribute to the development of atherosclerosis. Nuclear factor E2-related factor 2 (Nrf2) is a redox-sensitive transcription factor known for its antioxidant, anti-inflammatory, and, thus, cell-protective properties. Its role in effecting a deactivated state of oxidized low-density lipoprotein (oxLDL)-generated foam cell macrophages (FCMs), a prevailing cellular phenotype of atherosclerotic lesions, has not been investigated yet.

View Article and Find Full Text PDF

Apoptotic cell (AC)-derived factors alter the physiology of macrophages (MΦs) towards a regulatory phenotype, characterized by reduced nitric oxide (NO) production. Impaired NO formation in response to AC-conditioned medium (CM) was facilitated by arginase II (ARG II) expression, which competes with inducible NO synthase for L-arginine. Here we explored signaling pathways allowing CM to upregulate ARG II in RAW264.

View Article and Find Full Text PDF

Efficient clearance of apoptotic cells (AC) by professional phagocytes is crucial for tissue homeostasis and resolution of inflammation. Macrophages respond to AC with an increase in antiinflammatory cytokine production but a diminished release of proinflammatory mediators. Mechanisms to explain attenuated proinflammatory cytokine formation remain elusive.

View Article and Find Full Text PDF

Removal of apoptotic cells by phagocytes is considered a pivotal immune regulatory process. Although considerable knowledge has been obtained on the postphagocytic macrophage phenotype, there is little information on molecular mechanisms, which provoke macrophage polarization. In this study, we show that human apoptotic Jurkat cells (AC) or AC-conditioned medium (CM) rapidly induces cyclooxygenase-2 (COX-2) expression in mouse RAW264.

View Article and Find Full Text PDF

In recent years it has become apparent that removal of apoptotic cells (AC) by professional phagocytes alters the macrophage phenotype. This change is characterized by attenuated proinflammatory cytokine expression and NO production, which mechanistically remained unexplained. With the intention to explore molecular mechanisms underlying reduced NO formation, we showed that NO production in IFNgamma-stimulated murine RAW264.

View Article and Find Full Text PDF