Publications by authors named "Anne-Marie Hecht"

Systematic investigations using neutron and X-ray small angle scattering in near-physiological salt solutions were made to reveal the effect of polymer concentration, pH, and calcium ion concentration on the structure of semi-dilute solutions of four model biopolymers [polyaspartic acid, DNA, chondroitin sulfate, and hyaluronic acid (HA)] representing typical backbone structures. In the low range (<0.01 Å), the scattering response () is dominated by scattering from large clusters.

View Article and Find Full Text PDF

The most abundant cartilage proteoglycan is aggrecan, a bottlebrush shaped molecule that possesses over 100 glycosaminoglycan (chondroitin sulfate and keratan sulfate) chains. The side-chains are linear sulfated polysaccharides that are negatively charged under physiological conditions. Aggrecan interacts with hyaluronic acid (HA) to form large aggregates.

View Article and Find Full Text PDF

We discuss the main findings of a long-term research program exploring the consequences of sodium/calcium ion exchange on the macroscopic osmotic and elastic properties, and the microscopic structure of representative synthetic polyelectrolyte (sodium polyacrylate, (polyacrylic acid)) and biopolymer gels (DNA). A common feature of these gels is that above a threshold calcium ion concentration, they exhibit a reversible volume phase transition. At the macroscopic level, the concentration dependence of the osmotic pressure shows that calcium ions influence primarily the third-order interaction term in the Flory-Huggins model of polymer solutions.

View Article and Find Full Text PDF

Chondroitin sulphate (CS) is a linear sulfated polysaccharide found in cartilage and other tissues in the body. Small angle neutron scattering (SANS) and dynamic light scattering (DLS) measurements are made on semi-dilute CS solutions to determine ion induced changes in the local order of the CS chains and in their dynamic properties. In salt-free CS solutions SANS detects the correlation peak due to local ordering between adjacent chains in which the characteristic interchain distance is ≈ 57 Å.

View Article and Find Full Text PDF

The hierarchical organization of cartilage proteoglycans is investigated on different length and time scales using osmotic pressure measurements, small angle neutron scattering (SANS), small angle X-ray scattering (SAXS), static and dynamic light scattering and neutron spin echo techniques. Osmotic pressure measurements reveal association of aggrecan bottlebrushes into microgel-like assemblies. SAXS, SANS and light scattering results indicate weak interpenetration between neighboring aggrecan molecules.

View Article and Find Full Text PDF

In solutions of the charged semirigid biopolymer hyaluronic acid in salt-free conditions, the diffusion coefficient D(NSE) measured at high transfer momentum q by neutron spin echo is more than an order of magnitude smaller than that determined by dynamic light scattering, D(DLS). This behavior contrasts with neutral polymer solutions. With increasing salt content, D(DLS) approaches D(NSE), which is independent of ionic strength.

View Article and Find Full Text PDF

DNA solutions and gels exhibit a wide range of phenomena, many of which have not yet been fully understood. In the presence of multivalent counterions, attraction between charged DNA strands occurs. Increasing the concentration of multivalent ions leads to a decrease of the osmotic pressure, and a sufficiently high ion concentration results in the precipitation of the polymer.

View Article and Find Full Text PDF

Hyaluronic acid (HA) is an anionic biopolymer that is almost ubiquitous in biological tissues. An attempt is made to determine the dominant features that account for both its abundance and its multifunctional role, and which set it apart from other types of biopolymers. A combination of osmotic and scattering techniques is employed to quantify its dynamic and static properties in near-physiological solution conditions, where it is exposed both to mono- and divalent counterions.

View Article and Find Full Text PDF

Many polyelectrolytes, ranging from sulfonated polystyrene to DNA, exhibit a strong sensitivity of their phase behavior to salt concentration, especially to higher valence salts, which often lead to phase separation. We show that the stiff polyelectrolyte aggrecan exhibits a qualitatively different behavior. Specifically, the scattering properties of aggrecan solutions are exceptionally insensitive to the addition of calcium salt, conferring on aggrecan the role of an ion reservoir mediating calcium metabolism in cartilage and bone, and also providing osmotic resilience to compressive load.

View Article and Find Full Text PDF

Aggrecan, a large biological polyelectrolyte molecule with a bottlebrush shape, forms complexes with hyaluronic acid (HA) that provide compressive resistance in cartilage. In solutions of aggrecan alone, the concentration dependence of the osmotic pressure Pi is marked by self-assembly of the molecules into aggregates. When HA is added to the solution at low aggrecan concentration c, the osmotic pressure is reduced, but in the physiological concentration range this trend is reversed.

View Article and Find Full Text PDF

The effect of the simultaneous presence of monovalent and divalent cations on the thermodynamics of polyelectrolyte solutions is an incompletely solved problem. In physiological conditions, combinations of these ions affect structure formation in biopolymer systems. Dynamic light scattering measurements of the collective diffusion coefficient D and the osmotic compressibility of semidilute hyaluronan solutions containing different ratios of sodium and calcium ions are compared with simple polyelectrolyte models.

View Article and Find Full Text PDF

The distribution of counterions in solutions of high molecular mass hyaluronic acid, in near-physiological conditions where mono- and divalent ions are simultaneously present, is studied by small angle neutron scattering and anomalous small angle x-ray scattering. The solutions contain either sodium or rubidium chloride together with varying concentrations of calcium or strontium chloride. The effects of monovalent-divalent ion exchange dominate the amplitude and the form of the counterion cloud.

View Article and Find Full Text PDF

The distribution of divalent ions in semidilute solutions of high-molecular-mass DNA containing both sodium chloride and strontium chloride in near-physiological conditions is studied by small-angle x-ray scattering and by small-angle neutron scattering. Both small-angle neutron scattering and small-angle x-ray scattering reveal a continuous increase in the scattering intensity at low q with increasing divalent ion concentration, while at high q the scattering curves converge. The best fit to the data is found for a configuration in which DNA strands of cross-sectional radius 10 angstroms are surrounded by a counterion sheath of outer radius approximately 13.

View Article and Find Full Text PDF