Publications by authors named "Anne-Marie Cziko"

Mechanisms of neuronal mRNA localization and translation are of considerable biological interest. Spatially regulated mRNA translation contributes to cell-fate decisions and axon guidance during development, as well as to long-term synaptic plasticity in adulthood. The Fragile-X Mental Retardation protein (FMRP/dFMR1) is one of the best-studied neuronal translational control molecules and here we describe the identification and early characterization of proteins likely to function in the dFMR1 pathway.

View Article and Find Full Text PDF

Recent results suggest that cytoplasmic mRNAs can form translationally repressed messenger ribonucleoprotein particles (mRNPs) capable of decapping and degradation, or accumulation into cytoplasmic processing bodies (P-bodies), which can function as sites of mRNA storage. The proteins that function in transitions between the translationally repressed mRNPs that accumulate in P-bodies and mRNPs engaged in translation are largely unknown. Herein, we demonstrate that the yeast translation initiation factor Ded1p can localize to P-bodies.

View Article and Find Full Text PDF

Local control of mRNA translation modulates neuronal development, synaptic plasticity, and memory formation. A poorly understood aspect of this control is the role and composition of ribonucleoprotein (RNP) particles that mediate transport and translation of neuronal RNAs. Here, we show that staufen- and FMRP-containing RNPs in Drosophila neurons contain proteins also present in somatic "P bodies," including the RNA-degradative enzymes Dcp1p and Xrn1p/Pacman and crucial components of miRNA (argonaute), NMD (Upf1p), and general translational repression (Dhh1p/Me31B) pathways.

View Article and Find Full Text PDF

We show that the age-related transition by adult honey bees from hive work to foraging is associated with changes in messenger RNA abundance in the brain for 39% of approximately 5500 genes tested. This result, discovered using a highly replicated experimental design involving 72 microarrays, demonstrates more extensive genomic plasticity in the adult brain than has yet been shown. Experimental manipulations that uncouple behavior and age revealed that messenger RNA changes were primarily associated with behavior.

View Article and Find Full Text PDF