Publications by authors named "Anne-Marie Chevrier"

In sickle cell disease, the factors involved in vasoocclusive crisis (VOC) include the sickling of red blood cells (RBC), abnormal blood rheology, inflammation, vascular adhesion, oxidative stress, coagulation, and vascular tone modulation. The aim of this study was to further characterize the molecular response of some factors involved in VOC by inducing a hypoxia/reoxygenation stress in sickle SAD mice. Results show that a hypoxia/reoxygenation stress in SAD mice can induce: (i) a decrease in reticulocytes count, and mean corpuscular volume along with an increase in lactate dehydrogenase (p = 0.

View Article and Find Full Text PDF

Patients with sickle cell disease (SCD) can present several severe symptoms during their lifetime, including painful events due to vascular occlusion (VOC). Even though multiple factors are involved in VOC, hypoxia is the most important triggering factor. Inositol hexaphosphate (IHP) reduces the oxygen-haemoglobin affinity thus improving the oxygen release in the blood stream and in the tissues.

View Article and Find Full Text PDF

Background: Hypoxia is a major cause of painful vaso-occlusive crisis in sickle cell disease (SCD). Simple transfusion and red blood cell (RBC) exchange are commonly used as preventive therapies whose aim is to dilute hemoglobin (Hb)S-containing RBCs (SS-RBCs) with normal RBCs (AA-RBCs) to prevent sickling. We hypothesized that the effectiveness of transfusion could be improved by the encapsulation of inositol hexaphosphate (IHP), an allosteric Hb effector, in transfused AA-RBCs.

View Article and Find Full Text PDF