The photophysical properties of a supramolecular fullerene-porphyrin ensemble resulting from the self-assembly of a pyrrolidinofullerene-imidazole derivative (F1) with a multimetalloporphyrin array constructed around a hexasubstituted fullerene core (F(ZnP)12) have been investigated. The fullerene hexa-adduct core of the host system does not play any active role in the cascade of photoinduced events of the supramolecular ensemble, indeed no intercomponent photoinduced processes could be observed in host F(ZnP)12. In contrast, upon axial coordination with the monosubstituted fullerene guest F1, a quantitative quenching of the fluorescence signal of the metalloporphyrins was observed for the supramolecular complex [F(ZnP)12(F1)n] both in polar and nonpolar solvents.
View Article and Find Full Text PDFPseudomonas aeruginosa is an opportunistic pathogen, synthesizing two major siderophores, pyoverdine (Pvd) and pyochelin (Pch), to cover its needs in iron(III). If the high affinity and specificity of Pvd toward iron(III) (pFe = 27.0) was well described in the literature, the physicochemical and coordination properties of Pch toward biologically relevant metals (Fe(III), Cu(II) or Zn(II)) have been only scarcely investigated.
View Article and Find Full Text PDFThe ability to control the kinetic barriers governing the relative motions of the components in mechanically interlocked molecules is important for future applications of these compounds in molecular electronic devices. In this Full Paper, we demonstrate that bipyridinium (BIPY(2+)) dications fulfill the role as effective electrostatic barriers for controlling the shuttling and threading behavior for rotaxanes and pseudorotaxanes in aqueous environments. A degenerate [2]rotaxane, composed of two 1,5-dioxynaphthalene (DNP) units flanking a central BIPY(2+) unit in the dumbbell component and encircled by the cyclobis(paraquat-p-phenylene) (CBPQT(4+)) tetracationic cyclophane, has been synthesized employing a threading-followed-by-stoppering approach.
View Article and Find Full Text PDFWe report here a thorough physico-chemical study of the coordination properties of clioquinol, an oxine-type active neurological drug in Alzheimer's disease, toward biologically relevant divalent metal ions (Cu, Zn, Ni, Co and Mn). Using a fruitful combination of electrospray mass spectrometry, absorption spectrophotometry and potentiometry, we have characterized the mono- and bis-chelated metal ion species. The determination of the stability constants showed a classical thermodynamic behavior along the studied series with the cupric complexes being by far the most stable species.
View Article and Find Full Text PDFThe synthesis, protonation, and Cu(2+) coordination chemistry of a tripodal heptaamine ligand (L(1)) functionalized with 2-pyridine fragments at the ends of its three branches are reported. L(1) presents six relatively high protonation constants followed by much more reduced constant that as indicated by the UV-vis and NMR data, occur on the pyridine fragments. p[H]-metric, ESI/MS(+), EPR and UV-vis data show that L(1) is able to form mono-, di-, and trinuclear Cu(2+) complexes.
View Article and Find Full Text PDFA versatile synthetic strategy, which was conceived and employed to prepare doubly threaded, bistable [c2]daisy chain compounds, is described. Propargyl and 1-pentenyl groups have been grafted onto the stoppers of [c2]daisy chain molecules obtained using a template-directed synthetic protocol. Such [c2]daisy chain molecules undergo reversible extension and contraction upon treatment with acid and base, respectively.
View Article and Find Full Text PDFAccessible and hindered phenanthroline-strapped Zn(II) porphyrin receptors exhibited suitable topography tailored to strongly and selectively bind N(1)-unsubstituted imidazoles and imidazoles appended to free-base porphyrins. Distal binding was clearly driven by the formation of strong bifurcated hydrogen bonds with the phenanthroline unit of the receptors. An extensive physicochemical study emphasized the influence of bulkiness of the substrate and of the porphyrin receptor on the binding and self-assembly mechanism.
View Article and Find Full Text PDFThe plant pathogenic enterobacterium Erwinia chrysanthemi causes important soft-rot disease on a wide range of plants including vegetables and ornamentals of economic importance. It produces a major mono(catecholate) siderophore, chrysobactin (alpha-N-(2,3-dihydroxybenzoyl)-D-lysyl-L-serine). To unravel the role of chrysobactin in the virulence of E.
View Article and Find Full Text PDFChemistry
October 2008
We have synthesized the mono, di-, and tri-alpha-fluoro ligands in the tris(2-pyridylmethyl)amine (TPA) series, namely, FTPA, F(2)TPA and F(3)TPA, respectively. Fluorination at the alpha-position of these nitrogen-containing tripods shifts the oxidation potential of the ligand by 45-70 mV per added fluorine atom. The crystal structures of the dichloroiron(II) complexes with FTPA and F(2)TPA reveal that the iron center lies in a distorted octahedral geometry comparable to that already found in TPAFeCl(2).
View Article and Find Full Text PDFImidazole-porphyrin coordination has become an important tool in the design of self-assembled materials. A combination of spectrophotometric and stopped-flow techniques has been used to gain insight into the control of imidazole binding in the distal pocket of phenanthroline-strapped porphyrins. The binding studies of a variety of imidazole substrates in combination with both hindered and accessible receptors have permitted the determination of the thermodynamic and kinetic parameters associated with the imidazole binding.
View Article and Find Full Text PDFPolyprenyl phosphates, as well as polyprenyl alcohols bearing different isopentenyl C(5) units, have been synthesized. The pH range of spontaneous vesicle formation of polyprenyl phosphates with or without polyprenyl alcohols was defined by fluorescence microscopy. A variety of the acyclic or monocyclic polyprenyl phosphates studied formed stable vesicles in water over a wide range of pHs, and the addition of polyprenyl alcohols allowed the vesicle formation of polyprenyl phosphates at higher pHs.
View Article and Find Full Text PDFIn the quest for fast throughput metal biosensors, it would be of interest to prepare fluorophoric ligands with surface-adhesive moieties. Biomimetic analogues to microbial siderophores possessing such ligands offer attractive model compounds and new opportunities to meet this challenge. The design, synthesis, and physicochemical characterization of biomimetic analogues of microbial siderophores from Paracoccus denitrificans and from the Vibrio genus are described.
View Article and Find Full Text PDFWe have postulated earlier that the highly branched isoprenoid alkanes, which are distributed widely in many sediments, may have been derived from the corresponding branched polyprenyl phosphates, potentially present in biomembranes in primitive organisms. These polyprenyl-branched polyprenyl phosphates might be derived by a simple alkylation from non-substituted polyprenyl phosphates, which we postulate to be the precursors of all membrane terpenoids. We have now synthesized a series of 6-(poly)prenyl-substituted polyprenyl phosphates and studied the formation of vesicles from these phosphates, as a function of the substituted-chain length, the position of the double bond, and pH.
View Article and Find Full Text PDFMixtures of amphiphilic cholesteryl phosphate (CP), sitosteryl phosphate (SP), or cholesteryl phosphocholine (CPC) with the nonphosphoryl diacyl lipid dimyristoylglycerol (DMG) or with cholesterol give self-organized systems (giant vesicles) in a wide range of pH, as demonstrated by fluorescence microscopy, differential scanning calorimetry, and small-angle X-ray scattering. The water permeability of a 1 : 1 molar mixture of CPC and DMG was also measured by a stopped-flow/light-scattering method. The novel self-organized systems are akin to natural eukaryotic ones, the only difference being the site of the phosphate-containing head-group, located on cholesterol instead of DMG.
View Article and Find Full Text PDFDendritic branches with 1, 2, or 4 peripheral fullerene subunits and an ammonium function at the focal point have been prepared. Their ability to form self-assembled dendritic structures with oligophenylenevinylene receptors bearing one or two crown ether moieties has been evidenced by ES-MS studies for the first time. These supramolecular complexes are multicomponent photoactive devices in which the emission of the central receptor is dramatically quenched by the fullerene units.
View Article and Find Full Text PDFOwing to the complementarity between a bis-Zn(II)-porphyrin receptor and a fullerene ligand bearing two pyridine substituents, the substrate can be clicked onto the ditopic receptor, thus leading to a stable non-covalent macrocyclic 1 ratio 1 complex.
View Article and Find Full Text PDFThe monolayer properties of some single-chain polyprenyl phosphates (phytanyl, phytyl, and geranylgeranyl phosphates), which we regard as hypothetical primitive membrane lipids, were investigated at the air-water interface by surface pressure-area (pi-A) isotherm measurements. The molecular area/ pressure at various pH conditions dependence revealed the acid dissociation constants (pKa values) of the phosphate. The pKa values thus obtained at the air-water interface (pKa1 = 7.
View Article and Find Full Text PDFA new fullerene derivative with an ammonium subunit has been prepared. Its ability to form supramolecular complexes with oligophenylenevinylene derivatives bearing one or two crown ether moieties has been evidenced by electrospray mass spectrometry, and UV-visible and luminescence spectroscopy experiments. Interestingly, the assembly of the C60-ammonium cation with the oligophenylenevinylene derivative bearing two crown ether moieties leads to the cooperative formation of the 2:1 complex owing to intramolecular fullerene-fullerene interactions.
View Article and Find Full Text PDFA series of ferrioxamine B analogues that target the bacterium Yersinia enterocolitica were prepared. These iron carriers are composed of three hydroxamate-containing monomeric units. Two identical monomers consist of N-hydroxy-3-aminopropionic acid coupled with beta-alanine, and a third unit at the amino terminal is composed of N-hydroxy-3-aminopropionic acid and one of the following amino acids: beta-alanine (1a), phenylalanine (1b), cyclohexylalanine (1c), or glycine (1d).
View Article and Find Full Text PDFThe copper(I) bis(chelate) complex Cu(L(0))(2) has been prepared from 2,9-diphenethyl-1,10-phenanthroline and Cu(CH(3)CN)(4)BF(4). Derivative Cu(L(0))(2) has been characterized by NMR, UV-vis spectroscopy, and X-ray crystallography. Interestingly, owing to the presence of the ethylene linker, the interligand pi-pi stacking interactions between the phenyl rings and the phenanthroline subunits in Cu(L(0))(2) do not induce significant distortions of the pseudotetrahedral symmetry around the Cu(I) center in the solid state or in solution.
View Article and Find Full Text PDFAzotobacter vinelandii, a nitrogen-fixing soil bacterium, secretes in iron deficiency azotobactin delta, a highly fluorescent pyoverdin-like chromopeptidic hexadentate siderophore. The chromophore, derived from 2,3-diamino-6,7 dihydroxyquinoline, is bound to a peptide chain of 10 amino acids: (L)-Asp-(D)-Ser-(L)-Hse-Gly-(D)-beta-threo-HOAsp-(L)-Ser-(D)-Cit-(L)-Hse-(L)-Hse lactone-(D)-N(delta)-Acetyl, N(delta)-HOOrn. Azotobactin delta has three different iron(III) binding sites which are one hydroxamate group at the C-terminal end of the peptidic chain (N(delta)-Acetyl, N(delta)-HOOrn), one alpha-hydroxycarboxylic function in the middle of the chain (beta-threo-hydroxyaspartic acid), and one catechol group on the chromophore.
View Article and Find Full Text PDFWe present a detailed study on the acid-base behaviour of a family of "potentially antiaromatic" p-benzoquinonediimine ligands. These 12pi electron molecules can be considered as constituted of two chemically connected but electronically not conjugated 6pi-electron subunits. Upon successive protonation, "mono" and "double" cyanine-type chromophores are generated in solution and allow a precise and sensitive spectrophotometric detection.
View Article and Find Full Text PDFWe report the self-assembly process of a supramolecular edifice based on the coordination of europium(III) by a ditopic strand L bearing tridentate bis(benzimidazolyl)pyridine subunits. Varying the metal/ligand ratio and using a fruitful combination of electrospray mass spectrometry and absorption spectrophotometry, we characterized three major complexes (EuL(2), Eu(2)L(2), and Eu(2)L(3)) in acetonitrile. Kinetic investigations showed an alternative "braiding" and "keystone" mechanism leading to Eu(2)L(3).
View Article and Find Full Text PDFA fruitful combination of potentiometry, absorption spectrophotometry, ESMS and 1H NMR enabled the characterisation of two caesium complexes with norbadione A and the determination of the respective stability constants of a mononuclear and a dinuclear caesium complex at pH approximately 6; a preliminary study allowed the assignment of five protonation sites of this pigment; a positively cooperative binding of the second Cs+ cation was observed.
View Article and Find Full Text PDF