Publications by authors named "Anne-Maria Poehler"

Background: Ozanimod, a sphingosine 1-phosphate receptor 1 and 5 modulator, was approved as a disease-modifying therapy for active relapsing-remitting multiple sclerosis (RRMS) in 2020 and for active ulcerative colitis in 2021. Long-term, real-world studies in a nonselective population are needed. OzEAN is an ongoing study to assess the real-world persistent use, effectiveness, and safety of ozanimod and its impact on quality of life (QoL) in patients with RRMS over a 5-year period.

View Article and Find Full Text PDF

SNCA/α-synuclein aggregation plays a crucial role in synucleinopathies such as Parkinson disease and dementia with Lewy bodies. Aggregating and nonaggregating SNCA species are degraded by the autophagy-lysosomal pathway (ALP). Previously, we have shown that the ALP is not only responsible for SNCA degradation but is also involved in the intracellular aggregation process of SNCA.

View Article and Find Full Text PDF

Multiple system atrophy (MSA), an atypical parkinsonian disorder, is characterized by α-synuclein (α-syn(+)) cytoplasmatic inclusions in mature oligodendrocytes. Oligodendrocyte progenitor cells (OPCs) represent a distinct cell population with the potential to replace dysfunctional oligodendrocytes. However, the role of OPCs in MSA and their potential to replace mature oligodendrocytes is still unclear.

View Article and Find Full Text PDF

Synucleinopathies like Parkinson disease and dementia with Lewy bodies (DLB) are characterized by α-synuclein aggregates within neurons (Lewy bodies) and their processes (Lewy neurites). Whereas α-synuclein has been genetically linked to the disease process, the pathological relevance of α-synuclein aggregates is still debated. Impaired degradation is considered to result in aggregation of α-synuclein.

View Article and Find Full Text PDF

It is commonly accepted that adult neurogenesis and gliogenesis follow the same principles through the mammalian class. However, it has been reported that neurogenesis might differ between species, even from the same order, like in rodents. Currently, it is not known if neural stem/progenitor cells (NSPCs) from various species differ in their cell identity and potential.

View Article and Find Full Text PDF

We have previously shown that soluble factors derived from mesenchymal stem cells (MSCs) induce oligodendrogenic fate and differentiation in adult rat neural progenitors (NPCs) in vitro. Here, we investigated if this pro-oligodendrogenic effect is maintained after cells have been transplanted onto rat hippocampal slice cultures, a CNS-organotypic environment. We first tested whether NPCs, that were pre-differentiated in vitro by MSC-derived conditioned medium, would generate oligodendrocytes after transplantation.

View Article and Find Full Text PDF