Publications by authors named "Anne-Mari Hakelien"

In contrast to many other sarcoma subtypes, the chaotic karyotypes of osteosarcoma have precluded the identification of pathognomonic translocations. We here report hundreds of genomic rearrangements in osteosarcoma cell lines, showing clear characteristics of microhomology-mediated break-induced replication (MMBIR) and end-joining repair (MMEJ) mechanisms. However, at RNA level, the majority of the fused transcripts did not correspond to genomic rearrangements, suggesting the involvement of trans-splicing, which was further supported by typical trans-splicing characteristics.

View Article and Find Full Text PDF

Differentiation of osteoblasts from mesenchymal stem cells (MSCs) is an integral part of bone development and homeostasis, and may when improperly regulated cause disease such as bone cancer or osteoporosis. Using unbiased high-throughput methods we here characterize the landscape of global changes in gene expression, histone modifications, and DNA methylation upon differentiation of human MSCs to the osteogenic lineage. Furthermore, we provide a first genome-wide characterization of DNA binding sites of the bone master regulatory transcription factor Runt-related transcription factor 2 (RUNX2) in human osteoblasts, revealing target genes associated with regulation of proliferation, migration, apoptosis, and with a significant overlap with p53 regulated genes.

View Article and Find Full Text PDF

Human mesenchymal stromal cells (hMSCs) show great potential for clinical and experimental use due to their capacity to self-renew and differentiate into multiple mesenchymal lineages. However, disadvantages of primary cultures of hMSCs are the limited in vitro lifespan, and the variable properties of cells from different donors and over time in culture. In this article, we describe the generation of a telomerase-immortalized nontumorigenic human bone marrow-derived stromal mesenchymal cell line, and its detailed characterization after long-term culturing (up to 155 population doublings).

View Article and Find Full Text PDF

Autosomal dominant Emery-Dreifuss muscular dystrophy (EDMD) is characterized by muscle wasting and is caused by mutations in the LMNA gene encoding A-type lamins. Overexpression of the EDMD lamin A R453W mutation in C2C12 myoblasts impairs myogenic differentiation. We show here the influence of stable expression of the R453W and of the Dunnigan-type partial lipodystrophy R482W mutation of lamin A in C2C12 cells on transcription and epigenetic regulation of the myogenin (Myog) gene and on global chromatin organization.

View Article and Find Full Text PDF

Directly turning a somatic cell type into another would be beneficial for producing replacement cells for therapeutic purposes. To this end, novel cell reprogramming strategies are being developed. We describe here methods for functionally reprogramming a somatic cell using an extract derived from another somatic cell type.

View Article and Find Full Text PDF

The direct transformation of one somatic cell type into another somatic cell type would be beneficial for producing isogenic replacement cells for therapeutic use. Various approaches for altering cell fate are being developed, including methods for differentiating stem cells isolated from somatic tissues. This chapter describes a procedure for turning one somatic cell type (the "donor" cell) into another somatic "target" cell type using cellular extracts.

View Article and Find Full Text PDF

Functional reprogramming of a differentiated cell toward pluripotency may have long-term applications in regenerative medicine. We report the induction of dedifferentiation, associated with genomewide programming of gene expression and epigenetic reprogramming of an embryonic gene, in epithelial 293T cells treated with an extract of undifferentiated human NCCIT carcinoma cells. 293T cells exposed for 1 h to extract of NCCIT cells, but not of 293T or Jurkat T-cells, form defined colonies that are maintained for at least 23 passages in culture.

View Article and Find Full Text PDF

We demonstrate a cell extract-based, genome-wide and heritable reprogramming of gene expression in vitro. Kidney epithelial 293T cells have previously been shown to take on T cell properties following a brief treatment with an extract of Jurkat T cells. We show here that 293T cells exposed for 1 h to a Jurkat cell extract undergo genome-wide, target cell-type-specific and long-lasting transcriptional changes.

View Article and Find Full Text PDF

We report a transient modulation of cell fate in fibroblasts briefly exposed to an extract derived from the rat insulin-producing beta cell line, INS-1E. Primary fetal rat fibroblasts were reversibly permeabilized with Streptolysin O, incubated for 1h in a 15,000g INS-1E nuclear and cytoplasmic extract, resealed, and cultured. A first marker of change in cell fate was a reduction of cell and nuclear size within days of exposure to extract such that in some instances the fibroblasts resembled INS-1E cells.

View Article and Find Full Text PDF

The direct conversion of one differentiated cell type into another--a process referred to as transdifferentiation--would be beneficial for producing isogenic (patient's own) cells to replace sick or damaged cells or tissue. Adult stem cells display a broader differentiation potential than anticipated and might contribute to tissues other than those in which they reside. As such, they could be worthy therapeutic agents.

View Article and Find Full Text PDF

Ways of directly turning a somatic cell into another (a process known as transdifferentiation) would alleviate difficulties associated with current nuclear transplantation procedures and be beneficial for producing replacement cells for therapeutic purposes. Adult stem cells have been shown to display a broader differentiation potential than anticipated and may contribute to tissues other than those in which they reside. In addition, novel transdifferentiation strategies are being developed.

View Article and Find Full Text PDF

We demonstrate here the functional reprogramming of a somatic cell using a nuclear and cytoplasmic extract derived from another somatic cell type. Reprogramming of 293T fibroblasts in an extract from primary human T cells or from a transformed T-cell line is evidenced by nuclear uptake and assembly of transcription factors, induction of activity of a chromatin remodeling complex, histone acetylation, and activation of lymphoid cell specific genes. Reprogrammed cells express T cell specific receptors and assemble the interleukin-2 receptor in response to T cell receptor CD3 (TCR CD3) complex stimulation.

View Article and Find Full Text PDF

We have developed a somatic cell-free system that remodels chromatin and activates gene expression in heterologous differentiated nuclei. Extracts of stimulated human T cells elicit chromatin binding of transcriptional activators of the interleukin-2 (IL-2) gene, anchoring and activity of a chromatin-remodeling complex and hyperacetylation of the IL-2 promoter in purified exogenous resting T-cell nuclei. The normally repressed IL-2 gene is transcribed in nuclei from quiescent human T cells and from various non-T-cell lines.

View Article and Find Full Text PDF