Emerging RNA virus infections are a growing concern among domestic poultry industries due to the severe impact they can have on flock health and economic livelihoods. Avian paramyxoviruses (APMV; avulaviruses, AaV) are pathogenic, negative-sense RNA viruses that cause serious infections in the respiratory and central nervous systems. APMV was detected in multiple avian species during the 2017 wild bird migration season in Ukraine and studied using PCR, virus isolation, and sequencing.
View Article and Find Full Text PDFThe complete genome of subsp. serovar Kottbus strain Kharkiv (serogroup C2-C3), which was isolated from a commercial pork production facility in Kharkiv, Ukraine, was assembled using long-read Nanopore sequences. A single circular contig (4,799,045 bp) comprised a complete chromosome encoding antibiotic resistance, highlighting the risk of cross-species livestock and human infection.
View Article and Find Full Text PDFThe three presently known enzymes responsible for arsenic-using bioenergetic processes are arsenite oxidase (Aio), arsenate reductase (Arr) and alternative arsenite oxidase (Arx), all of which are molybdoenzymes from the vast group referred to as the Mo/W-bisPGD enzyme superfamily. Since arsenite is present in substantial amounts in hydrothermal environments, frequently considered as vestiges of primordial biochemistry, arsenite-based bioenergetics has long been predicted to be ancient. Conflicting scenarios, however, have been put forward proposing either Arr/Arx or Aio as operating in the ancestral metabolism.
View Article and Find Full Text PDFBackground: Riverine ecosystems are biogeochemical powerhouses driven largely by microbial communities that inhabit water columns and sediments. Because rivers are used extensively for anthropogenic purposes (drinking water, recreation, agriculture, and industry), it is essential to understand how these activities affect the composition of river microbial consortia. Recent studies have shown that river metagenomes vary considerably, suggesting that microbial community data should be included in broad-scale river ecosystem models.
View Article and Find Full Text PDFHere, we report the complete genome sequence of an African swine fever (ASF) virus (ASFV/Kyiv/2016/131) isolated from the spleen of a domestic pig in Ukraine with a lethal case of African swine fever. Using only long-read Nanopore sequences, we assembled a full-length genome of 191,911 base pairs in a single contig.
View Article and Find Full Text PDFMicrobiol Resour Announc
January 2019
In this report, we describe the complete genome assembly of a Pantoea agglomerans isolate, TH81, collected from a boreal forest soil associated with permafrost thaw. Using both Nanopore and Illumina sequences, we assembled four circular contigs totaling 4,983,504 bp ( , 4,127,869 bp), a complete chromosome with three plasmids.
View Article and Find Full Text PDFThe ubiquitous ATP synthase uses an electrochemical gradient to synthesize cellular energy in the form of ATP. The production of this electrochemical gradient relies on liposoluble proton carriers like ubiquinone (UQ), which is used in the respiratory chains of eukaryotes and proteobacteria. The biosynthesis of UQ requires three hydroxylation reactions on contiguous positions of an aromatic ring.
View Article and Find Full Text PDFFungi are important parasites of primary producers and nutrient cyclers in aquatic ecosystems. In the Pacific-Arctic domain, fungal parasitism is linked to light intensities and algal stress that can elevate disease incidence on algae and reduce diatom concentrations. Fungi are vastly understudied in the marine realm and knowledge of their function is constrained by the current understanding of fungal distribution and drivers on global scales.
View Article and Find Full Text PDFComplex life on our planet crucially depends on strong redox disequilibria afforded by the almost ubiquitous presence of highly oxidizing molecular oxygen. However, the history of O2-levels in the atmosphere is complex and prior to the Great Oxidation Event some 2.3 billion years ago, the amount of O2 in the biosphere is considered to have been extremely low as compared with present-day values.
View Article and Find Full Text PDFLiving entities are unimaginable without means to harvest free energy from the environment, that is, without bioenergetics. The quest to understand the bioenergetic ways of early life therefore is one of the crucial elements to understand the emergence of life on our planet. Over the last few years, several mutually exclusive scenarios for primordial bioenergetics have been put forward, all of which are based on some sort of empirical observation, a remarkable step forward from the previous, essentially untestable, ab initio models.
View Article and Find Full Text PDFBiochim Biophys Acta
February 2013
Living cells are able to harvest energy by coupling exergonic electron transfer between reducing and oxidising substrates to the generation of chemiosmotic potential. Whereas a wide variety of redox substrates is exploited by prokaryotes resulting in very diverse layouts of electron transfer chains, the ensemble of molecular architectures of enzymes and redox cofactors employed to construct these systems is stunningly small and uniform. An overview of prominent types of electron transfer chains and of their characteristic electrochemical parameters is presented.
View Article and Find Full Text PDFIt is not known how plants cleave the thioester bond of 1,4-dihydroxy-2-naphthoyl-CoA (DHNA-CoA), a necessary step to form the naphthoquinone ring of phylloquinone (vitamin K(1) ). In fact, only recently has the hydrolysis of DHNA-CoA been demonstrated to be enzyme driven in vivo, and the cognate thioesterase characterized in the cyanobacterium Synechocystis. With a few exceptions in certain prokaryotic (Sorangium and Opitutus) and eukaryotic (Cyanidium, Cyanidioschyzon and Paulinella) organisms, orthologs of DHNA-CoA thioesterase are missing outside of the cyanobacterial lineage.
View Article and Find Full Text PDFUbiquinone (coenzyme Q) is the generic name of a class of lipid-soluble electron carriers formed of a redox active benzoquinone ring attached to a prenyl side chain. The length of the latter varies among species, and depends upon the product specificity of a trans-long-chain prenyl diphosphate synthase that elongates an allylic diphosphate precursor. In Arabidopsis, this enzyme is assumed to correspond to an endoplasmic reticulum-located solanesyl diphosphate synthase, although direct genetic evidence was lacking.
View Article and Find Full Text PDFEvolutionary histories of enzymes involved in chemiosmotic energy conversion indicate that a strongly oxidizing substrate was available to the last universal common ancestor before the divergence of Bacteria and Archaea. According to palaeogeochemical evidence, O(2) was not present beyond trace amounts on the early Earth. Based on recent phylogenetic, enzymatic and geochemical results, we propose that, in the earliest Archaean, nitric oxide (NO) and its derivatives nitrate and nitrite served as strongly oxidizing substrates driving the evolution of a bioenergetic pathway related to modern dissimilatory denitrification.
View Article and Find Full Text PDFBackground: Phylogenies of certain bioenergetic enzymes have proved to be useful tools for deducing evolutionary ancestry of bioenergetic pathways and their relationship to geochemical parameters of the environment. Our previous phylogenetic analysis of arsenite oxidase, the molybdopterin enzyme responsible for the biological oxidation of arsenite to arsenate, indicated its probable emergence prior to the Archaea/Bacteria split more than 3 billion years ago, in line with the geochemical fact that arsenite was present in biological habitats on the early Earth. Respiratory arsenate reductase (Arr), another molybdopterin enzyme involved in microbial arsenic metabolism, serves as terminal oxidase, and is thus situated at the opposite end of bioenergetic electron transfer chains as compared to arsenite oxidase.
View Article and Find Full Text PDFA survey of genomes for the presence of gene clusters related to cbb(3) oxidases detected bona fide members of the family in almost all phyla of the domain Bacteria. No archaeal representatives were found. The subunit composition was seen to vary substantially between clades observed on the phylogenetic tree of the catalytic subunit CcoN.
View Article and Find Full Text PDFPreviously published phylogenetic trees reconstructed on "Rieske protein" sequences frequently are at odds with each other, with those of other subunits of the parent enzymes and with small-subunit rRNA trees. These differences are shown to be at least partially if not completely due to problems in the reconstruction procedures. A major source of erroneous Rieske protein trees lies in the presence of a large, poorly conserved domain prone to accommodate very long insertions in well-defined structural hot spots substantially hampering multiple alignments.
View Article and Find Full Text PDF