Essentially, the term aerogel describes a special geometric structure of matter. It is neither limited to any material nor to any synthesis procedure. Hence, the possible variety of materials and therefore the multitude of their applications are almost unbounded.
View Article and Find Full Text PDFThe atomic redistribution processes occurring in multiparticle nanostructures are hardly understood. To obtain a more detailed insight, we applied high-resolution microscopic, diffraction and spectroscopic characterization techniques to investigate the fine structure and elemental distribution of various bimetallic aerogels with 1:1 compositions, prepared by self-assembly of single monometallic nanoparticles. The system Au-Ag exhibited a complete alloy formation, whereas Pt-Pd aerogels formed a Pd-based network with embedded Pt particles.
View Article and Find Full Text PDFA controlled assembly of natural beta-cyclodextrin modified Au NPs mediated by dopamine is demonstrated. Furthermore, a simple and sensitive colorimetric detection for dopamine is established by the concentration-dependent assembly.
View Article and Find Full Text PDFOne plausible approach to endow aerogels with specific properties while preserving their other attributes is to fine-tune the building blocks. However, the preparation of metallic aerogels with designated properties, for example catalytically beneficial morphologies and transition-metal doping, still remains a challenge. Here, we report on the first aerogel electrocatalyst composed entirely of alloyed PdNi hollow nanospheres (HNSs) with controllable chemical composition and shell thickness.
View Article and Find Full Text PDFCONSPECTUS: Metallic and catalytically active materials with high surface area and large porosity are a long-desired goal in both industry and academia. In this Account, we summarize the strategies for making a variety of self-supported noble metal aerogels consisting of extended metal backbone nanonetworks. We discuss their outstanding physical and chemical properties, including their three-dimensional network structure, the simple control over their composition, their large specific surface area, and their hierarchical porosity.
View Article and Find Full Text PDFA class of 3D PdNi bimetallic nano-materials with porous nanostructures is synthesized using a facile and versatile approach at room temperature. Due to their porous nanostructures, their clean surfaces, as well as the synergistic effect between their compositions, the as-prepared PdNi exhibit greatly enhanced activity and stability towards methanol electrooxidation in an alkaline medium, holding great promise in fuel cells.
View Article and Find Full Text PDFIn this study, we introduce the first membraneless glucose/O2 biofuel cell using Pd-based aerogels as electrode materials. The bioanode was fabricated with a coimmobilized mediator and glucose oxidase for the oxidation of glucose, in which ferrocenecarboxylic acid was integrated into a three-dimensional porous beta-cyclodextrin-modified Pd aerogel to mediate the bioelectrocatalytic reaction. Bilirubin oxidase and Pd-Pt alloy aerogel were confined to an electrode surface, which realized the direct bioelectrocatalytic function for the reduction of O2 to H2 O with a synergetic effect at the biocathode.
View Article and Find Full Text PDFWe report the controllable synthesis of Pd aerogels with high surface area and porosity by destabilizing colloidal solutions of Pd nanoparticles with variable concentrations of calcium ions. Enzyme electrodes based on Pd aerogels co-immobilized with glucose oxidase show high activity toward glucose oxidation and are promising materials for applications in bioelectronics.
View Article and Find Full Text PDFDiatom-templated noble metal (Ag, Pt, Au) and semiconductor (CdTe) nanoparticle arrays were synthesized by the attachment of prefabricated nanoparticles of defined size. Two different attachment techniques-layer-by-layer deposition and covalent linking-could successfully be applied. The synthesized arrays were shown to be useful for surface-enhanced Raman spectroscopy (SERS) of components, for catalysis, and for improved image quality in scanning electron microscopy (SEM).
View Article and Find Full Text PDF