Publications by authors named "Anne-Geert Volbeda"

Article Synopsis
  • Group A Carbohydrate (GAC), linked to a carrier protein, shows promise as a vaccine candidate against Group A Streptococcus infections, with GAC's structure consisting of a polyrhamnose backbone and N-acetylglucosamine residues.
  • Researchers synthesized various lengths of GAC and polyrhamnose fragments and confirmed that the immune-targeting portion (epitope) is based on GlcNAc within the polyrhamnose structure.
  • In animal tests, the GAC conjugate produced stronger immune responses, indicated by higher levels of anti-GAC antibodies, compared to the polyRha variant, supporting GAC as the preferred component for a potential vaccine.
View Article and Find Full Text PDF

Endolysin enzymes from bacteriophage cause bacterial lysis by degrading the peptidoglycan cell wall. The streptococcal C1 phage endolysin PlyC, is the most potent endolysin described to date and can rapidly lyse group A, C, and E streptococci. PlyC is known to bind the Group A streptococcal cell wall, but the specific molecular target or the binding site within PlyC remain uncharacterized.

View Article and Find Full Text PDF

In this work a photosubstitution strategy is presented that can be used for the isolation of chiral organometallic complexes. A series of five cyclometalated complexes Ru(phbpy)(N-N)(DMSO-κS)](PF) ([1]PF-[5]PF) were synthesized and characterized, where Hphbpy = 6'-phenyl-2,2'-bipyridyl, and N-N = bpy (2,2'-bipyridine), phen (1,10-phenanthroline), dpq (pyrazino[2,3- f][1,10]phenanthroline), dppz (dipyrido[3,2- a:2',3'- c]phenazine, or dppn (benzo[ i]dipyrido[3,2- a,2',3'- c]phenazine), respectively. Due to the asymmetry of the cyclometalated phbpy ligand, the corresponding [Ru(phbpy)(N-N)(DMSO-κS)]complexes are chiral.

View Article and Find Full Text PDF

The development of effective protecting group chemistry is an important driving force behind the progress in the synthesis of complex oligosaccharides. Automated solid-phase synthesis is an attractive technique for the rapid assembly of oligosaccharides, built up of repetitive elements. The fact that (harsh) reagents are used in excess in multiple reaction cycles makes this technique extra demanding on the protecting groups used.

View Article and Find Full Text PDF

Although multivalent binding to surfaces is an important tool in nanotechnology, quantitative information about the residual valency and orientation of surface-bound molecules is missing. To address these questions, we study streptavidin (SAv) binding to commonly used biotinylated surfaces such as supported lipid bilayers (SLBs) and self-assembled monolayers (SAMs). Stability and kinetics of SAv binding are characterized by quartz crystal microbalance with dissipation monitoring, while the residual valency of immobilized SAv is quantified using spectroscopic ellipsometry by monitoring binding of biotinylated probes.

View Article and Find Full Text PDF

A new, fast, mild and chemoselective deprotection method to cleave p-methoxybenzyl and 2-naphthylmethyl ethers using catalytic amounts of hydrochloric acid in a 1:1 mixture of hexafluoro-2-propanol (HFIP) and methylene chloride (DCM) is described. The scope of the methodology becomes apparent from 14 examples of orthogonally protected monosaccharides that are subjected to HCl/HFIP treatment. The applicability of the HCl/HFIP method is illustrated by the synthesis of a sulfated β-mannuronic acid disaccharide.

View Article and Find Full Text PDF

Well-defined fragments of hyaluronic acid (HA) have been obtained through a fully automated solid-phase oligosaccharide synthesis. Disaccharide building blocks, featuring a disarmed glucuronic acid donor moiety and a di-tert-butylsilylidene-protected glucosamine part, were used in the rapid and efficient assembly of HA fragments up to the pentadecamer level, equipped with a conjugation-ready anomeric allyl function.

View Article and Find Full Text PDF